
Lefters
QDOS
manual

Way back in January 2984,
when the Sinclair QL was

launched, there was much said
about ‘multi-tasking’ and the
amazing QL operating system
— QDOS. Now, seven months
alter ordering the QL and two
months alter receiving the ma
chine and its ‘User Guide’, I
have taken delivery of the
‘QDOS Manual’ at a cost of £13,
including postage and
packing.

The document Sinclair Re
search calls the ‘QDOS Manual’
is, in fact, the missing pages
from the QL Users’ Guide detai
]ing such mysteries as ‘multi
tasking’, system variables and
ODOS system calls which the
advanced programmer would
find invaluable.

I ended up with my QDOS
Manual by writing polite letters
to Sinclair Research asking for
the technical data”... I felt I
had a right to be supplied with”.
This resulted in my getting a
letter from the Customer Rela
tions Department suggesting
that I forward a cheque for £13.
Try it — it might work for you. It
arrived within a few days —

honest!
Once you get your hands on

one of the elusive documents,
written by Tony Tebby, you
will find it has some 150 pages
and is written in a highly techni
cal manner.

The first thing I noticed was a
secret revealed which has
been kept closely guarded by
Sinclair: The QL was initially
intended as a 32KJ128K RAM
configuration with an option to
upgrade, similar to the Spec
trum l6K/48K arrangement.

A brief introduction and
overview of QDOS starts the
manual, closely followed by
details of changes to previous
versions. My manual docu
ments QDOS Version 1.03 —

the earlier ones run through the
release numbers 0.05, 0.06,
007,0.08, 1.00, 10.01 and 1.02. In
fct, you can fmd out which
version of QDOS you have by
looking through the Rom for a
string in the format n.nn. My
‘AH’ version QL has version
1.02 QDOS.

The first half or so of the
manual systematically des
cribes each system call to
ODOS (via the MC68008 Tmp

instructions) detailing input pa
rameteis, output parameters, xe
gistezs affected and possible
error return situations. The
subjects covered by these
Traps are: job creation and
deletion, job management, re
sident procedure control, dis
play handling, Intel i8049
communication, serial port
control, real-time clock
control, memory allocation and
file handling.

Other chapters are devoted
to such subjects as device
drivers, Rom drivers, inter
rupts, arithmetic handling, QL
Microdrive format, interfacing
to QL SuperBASIC, system va
riables and example assembly
programs.

Details on QL Peripheral ex
pansion are not available until
“after the launch of the various
devices”.

As I said earlier, the manual
is not exactly written with the
complete beginner in mind —

more the advanced proram
mer, or hobbyist.

With this said, I have to say
the QDOS Manual is everything
I wished. Let us not get roman
tic, though. it is quite obvious
this extra information should
have been supplied in the first
place with the QL — not as an
optional extra several months
later. I hear that ‘multi-tasking’
is not implemented on QL ver
sions FB, PM and AH. We will
all have to wait for Sinclair to
plug in the precious JM version,
“within ten working days”.

Then, your QDOS Manual
will become a QL Bible.

AJan Turzzbull
Gale Green

Stockport
Cheshire

Anew
bug

Ian Logan wants to hear about
‘new’ Spectrum bugs huh?

OK, here’s one.
1 DEF FN e(n,m)=n+m DEF FN.
fO=FN e(29,FN e(l7,8)): REM num
bers chosen especially for
HHGTTG fans.
PRINT FN 10
42
is the wrong answer. FNe(n,ni)
just calculates the sum of two
numbers, FN 1) should give the
sumof29plusthesumofl7ancj
8(29+17+8=54), but it doesn’t.
In fact, the computer has
worked out 17+17+8=42.

This is because, although the
Spectrum uses a stack to keep
track of the order of functions
(ie, it must perform Fn e(17,8)
before Fn e(29 . . .) it holds the
numbers it works with, its ope
rands, in fixed locations. This
means that the 29 and the 17
will occupy exactly the same
areas of memory because they
are both the first operand of an
The. Since the 17 is interpreted
after the 29, it just replaces it
before the computer has had a
chance to do anything with the
29.

So the computer ends up
evaluating Fn e (17,17+8).

Julian Skidmore
25 Cossall Road

Trowell
Notts

Evil and
sinister

Firstly, congratulatio on the
improvements to Popular

Computing Weekly. It was
always the leading magazine,
but is now even better (per
haps with the exception of the
unamusing advertisement from
Automata).

Anyway I digress from the
main point, which is to point out
my extreme displeasure at re
ceiving inside PCW this week
a leaflet advertising a Dianetics
publication. You cannot fail to
have read a High Court Judge’s
recent comments about the
Scientologists — the group be
hind Dianetics — whose activi
ties parallel those of the Unifi
cation ‘Church’ (Moonies).

The Judge described Scien
tology as “Evil” and “Sinister”,
and by allowing Scientology a
place in your publication, you
may have unwittingly lined up
some reader or readers for a

particularly nasty experience.
H Petfield

6 Cranley Gardens
Wallington

Suirey
The magazine will not be
taking any more Scientology
ads.

Vic2O
modulator

It was interesting to read Phil
Roger’s reply toP Whalley in

Peek & Poke in the July 19 issue
on the question of faulty Vic2O
modulators.

A ‘faulty’ Vic modulator is
often caused by users and not
by the Black Box itself. Many
people (quite possibly Mr
Whalley not included) remove
the modulator from the Vic by
tugging at the cable between
the modulator and the ma
chine, and not by the recom
mended method of holding the
actual connecting plug.
Constant tugging wrenches the
leads inside the connector out
of position causing loss of
sound, or picture, or both.

M J Davies
The Waverley

79 Rhosmaen Street
Liandeilo

Dyfed

Stop
bickering!

I would just like to point out to
Mr Bathurst (August 9 issue),

that, while the Commodore 64
has only 39K for Basic pro
gramming, it has another 19K
which can be used either for
machine code, or for storing
graphic or sound detail.

I also object to letters like
that of Mr Haigliley (same is
sue), which, while it has a point
to make — that magazines do
not print enough for the Elec
tron (I agree, but can’t the
Electron use BBC software?),
the writer also decides to slip in
a quick slagging-off of the
Commodore 64.

Well, I own a TZQPA
3200042K computer with built-
in speech synthesiser, instant
retrieval disc drive, TV-
resolution graphics, and it’s
better than all the other compu
ters put together, so stop
bickering!

M Valentine
lOlA Underdale Road

Shrewsbury

22-28 AUGUST1984 7

Urs
Kommentar zu Text
typo, should read 1984

Urs
Kommentar zu Text
typo, should read 1.01

II.

One of the three people who
created the QL resigned in
disgust the day it was
launched.

The big three were Jan
Jones (who wrote the Basic
compiler), David Karlin
(responsible for the
hardware) and Tony Tebby —

author of QDOS. It was he
who, appalled by Sinclair’s
promise that the QL would
be shipped within six weeks
handed in his notice
immediately after the
machine’s January
unveiling.

In the event Tony hung on
a little longer, eventually
fixing a date to leave after
Sinclair’s management
decided to ship those first 89
machines without, he says,
telling the software division.

He still takes a lively
interest in the QL — so lively
that many of his opinions are
unprintable! It’s worth
recording however his belief
that the delay was
exclusively due to problems
with the machinery itself,
the apparent difficulties with
SuperBasic and QDOS being
caused by the firmware
writers having to conform
with frequent hardware
updates. Status conscious QL
users, in fact, might care to
enliven their one-upmanship
over operating systems with
a little snobbery regarding
the hardware issue of their
machines: check the
underside of your QL for the
two digits following the
green D; 07 is good, anything
higher than 09 is excellent.
Particularly interesting
meanwhile are Tony’s
opinions on the shape the
QL’s promised new operating
system — expected next year
— ought to take.

‘I’m fairly confident that
the new version will include
improvements to the Basic
editor, but the cost in
memory of any full screen
editor would be
disproportionate, especially
when you consider what else
you could have for the same

amount of code,’ he says.
Preferable alternative

goodies, feels Tony, would
include direct access file
handling in Basic, the ability
to read or write data to
anywhere in a microdrive
file; formatted print using,
parameters on a print
command to describe in
detail the format of output; a
full set ofjob control
facilities for examining what
multi-tasking programs are
running, and for killing
them, suspending them,
changing their priorities,
etc; and a spooler, for
outputting files to a printer
while the user gets on with
other tasks.

‘All that lot would take
about half as much ROM
space as the 2K you’d need
for a full screen editor,’ says
Tony, though he’s dubious
about the likelihood of
Sinclair coming to sensible
decisions about what to offer
in the new ROMs.

‘They’ll probably be more
impressed by marketing
appeal,’ he remarks, than by
what the facilities actually
do, which is unfortunate
because marketing appeal
only sells the first few
machines, it doesn’t sell the
next million.’

So what’ll happen to
people with the old operating
system, I asked innocently.
Will they get a free upgrade?

‘There is no old operating
system and there never has
been. The operating system
which is out now is the same
as the operating system
which was out in January.
Anything else is just a story
invented by journalists
looking for something to
write about.’

Gulp.
‘But in any case, QDOS

contains linkages to
facilitate expansion. All the
things I’ve mentioned can be
supplied externally — on
microdrive or ROM
cartridge, for example — to be
booted up on power on, and
will look just as if they form
part of the machine. They
could be built into the new
ROM, but they certainly
don’t need to be.’

Quill is slow. I know because
Psion Managing Director
David Potter told me. He
even said why.

But first the good news: ‘In
September we’ll be releasing
a Quill Version 2 which will
overcome all the problems of
Version 1 thanks to an
intensive effort to specially
code-down, and using special
techniques to compress the
software. We’ve also put
special additional features in
the screen driver, writing
our own outside of QDOS to
speed writing to the screen.’

Phew! But why are all
these hairy techniques
necessary?

David explained: ‘Quill is
actually designed as a very
powerful word processor to
run very large documents. It
was designed for substantial
machines. You could criticise
it in the sense that you’re
trying to pack a hell of a lot
into a modest machine — the
QL.

‘The effects of this are,
firstly that the amount of
data memory left — because
the program is very
substantial — is modest.

‘Secondly, we’ve had to
resort to overlaying, which
was one of the points made
in QL User, — when you press
for Command the microdrive
whirrs to get another overlay
in. When the code
compression is finished, all
the commands will be
resident in RAM at all times,
and additional memory will
be available to the buffer
space so that Microdrive 2
will be less used.

‘The third factor is that
there is no video chip in the
QL, and therefore
everything on the screen has
to be done by the processor.
That is a hardware design
feature of the QL which
frankly is pretty tricky.

‘And the final factor is the
microdrives.’

Now none of these
observations about Quill will
cause particular surprise to
readers of this magazine,
who will remember similar
remarks in the somewhat
critical review in our last
issue. What is surprising is
that they were made when
Mr Potter phoned to
complain about said review.

NEWS.NEWS.
by Sid Smith ofMicronet.
A run-down of new products, people and events in the QL market

All smiles fromPsion anciP’

Slowness in the eye of the user

4/QL User/October 1984

Massive Cuts -

As of 2nd September Sinclair
Research will have cut the
price of the QL by half, from
£399 to £199.95. According to
Jane Boothroyd, UK Sales and
Marketing manager, the
massive reduction is ‘in line
with reduced manufacturing
costs’. Industry sceptics,
however, would view this as a
last ditch attempt to save the
QL in the light of fierce
competition from Atari,
Amstrad and Commodore.
Whatever the reason, there
can be little doubt that the
new pricing, coming as it does
immediately prior to the peak
selling Christmas period, will
send shudders through the
industry and hopefully the
competition.

At under £200, the QL now
makes a mockery of any
distinction between home
computers destined for
entertainment use and those
for serious use in small
businesses or education. With
128K RAM, 32-bit
architecture, 2x lOOK
microdrives it can outperform
any mass market games
playing machine currently
available. Furthermore its
award winning bundled
software means that users will
have access to the so-called
‘essential’ applications (ie,
word processing, database and
spreadsheet operations) at no
extra cost.

The new pricing would also
seem to indicate that Sinclair
now see the QL as the logical
successor to the Spectrum.
This view would seem to have
been anticipated by
independent peripheral
manufacturers who have been
quick to support the machine.
Users are now able to pick and
choose between a variety of
competitively priced
expansion options and need
not necessarily depend upon
those marketed by Sinclair
themselves.

ICEd Over
Eidersoft’s Icon Control
Environment or ICE for short,
is the QL’s answer to GEM.
Designed as a user-friendly
‘front end’ for QDOS, ICE
allows you to control the QL’s
various functions with
childlike ease.

Similar to GEM it cocoons
the user from the vagaries of
the operating system in a
protective graphics shell. This
takes as its theme the idea
that a parallel can be drawn
between operating a computer
and running a busy office.
Switch on your QL and the
screen depicts a tidy little
workdesk with little figures or
‘icons’ dotted over it
representing devices that can
be linked to the QL, various
files in storage and such odds
and ends as a wastepaper
basket, calculator and
calendar. All you have to do is
select an operation from a
control panel at the foot of the
display and point to the
appropriate item or items on
the screen and ICE will take
care of the rest. In this way

The same cannot be said of
games software houses.
Whilst the QL is well
supported in terms of business
and development software,
there are few games of note
running on it. Despite the
obvious signs that 8-bit
processors such as the Z80 and
6502 have had their day none
of the big names hav.e been
prepared to risk a move across
the 68000.

Given the QL’s new price
and the fact that Dixon’s alone
are, we understand, stocking
30,000 machines, it will be
interesting to see whether this
is still the case after
Christmas. Who said the QL
was finished?!

MG Extinct
The MG ROM available on
overseas models of the QL is
destined never to appear in
the UK. Sinclair are
understood to be developing
an even better ROM for home
consumption. This is just as
well as the MG has found few
supporters overseas.
Apparently an ‘improvement’
in a line drawing algorithm
has meant that points drawn
on the screen do not appear
where they are supposed to.

keyboard input is reduced to
an absolute minimum and the
system is virtually idiot-proof.

Without an elaborate
system ofpull down windows
ICE is very much less
sophisticated than GEM.
However, such a comparison is
largely academic as without
drastic modification the QL
could not possibly support all
90K of GEM. ICE, on the other
hand occupies next to no
memory as it sits in a 16K

Psion Update
The latest versions of Psion’s
software are putting in an
appearance in Europe. The
differences between version
2.00 and 2.03 are:

1. Memory allocation
problems have been ironed out
so that you may re-use your
programs without getting an
error message and being
compelled to reset the QL.

2. Quill incorporates an
option to import a file by line
or paragraph.

3. In addition to the current
Epsonscreen dump, Easel will
cater for nine other printers
and will allow for standard
output to Epson and HWP
plotters.

4. Archive now include an
option to design your own
printed forms using SEDIT.

5. A facility to load from and
save to the Network device
has been implemented.

6. The algorithms
controlling use of memory
with Quill have been
improved so that it is now
possible to create 12K
documents on Quill before the
program overlays it to
microdrive.

Further information from
Psion — 0 1-723 9408

EPROM that plugs into a
socket on the back of the QL.

ICE will cost £49.95 and
will be marketed along with a
microdrive cartridge
containing a number of useful
utilities colourfully described
as ICING. The most
interesting of these is QTASK
a program that permits users
to flick back and forth
instantly between programs
loaded into memory simply by
pressing CTRL+F3.

RAMbling On
Silicon Express have come up
with one of those simple ideas
that you wish you’d thought of
yourself. Simply prise the lid
offyour QL, yank out the 16
64K DRAMs installed
courtesy of Sinclair and plug
in a similar number of the
very latest 256K chips.

Ifyou did it yourself, you
would have transformed your
QL into the most expensive
doorstop you’ve ever had the
privilege to buy. And, having
invalidated the warranty you
would be stuck with it for the
rest of its non-biodegradable
life.

However, if the
microsurgeons at Silicon
Express perform the operation
using a special desoldering
machine, you get a fourfold
increase in memory, a pristine
QL and a 90 day warranty for
everything but the
microdrives. As the latter are
the things most likely to go
wrong with the QL the
upgrade would seem
inadvisable for those with
brand new machines. For the
rest however, at a third of the
price of a conventional
upgrade yet identical in
performance, it’s ideal.

NEWS
The latest software, hardware and information on the QL product front.

— —
ALly opecasnal calculator— one of

QL User/October 1985/5

Alan Turnbull’s investigations

reveal that the Quantum Leap

was not a single bound but a

series of short hops

In January 1984, the so-called
Quantum Leap was made by
Sinclair Research — the QL
was launched with 128K RAM
on board, two Microdrives
built-in, a bundle of four
comprehensive software

release was called PB which
presumably meant ‘Full of
Bugs’. The line editor would
not let you edit a line it had
flagged as ‘bad’ — you had to
type it all in again! Most of the
commands didn’t work and all
you could do with ‘FB’ was to
play and dream about what it
should be like.

Next came a hurredly
botched version — PM— which
Sinclair Research probably
hoped would stay in office for
at least five months if not five
years! The line editor was
better but the Psion packages
were still taking minutes
rather than seconds to load.
And then, they rarely worked.

But after that, Sinclair
Research released what it
described as the final version
of the QL’s firmware — AH—
which certainly brought a sigh
of relief! The Psion software
would now load in around
30-40 seconds and the
machine did not crash so
often. It was by no means the
final version as I shall soon
show you.

Ever true to its word, out
came another ROM — JM—
actually named after John
Mathieson and this
apparently made Microdrive
handling better. One major
bug was still present though —

the QL would only recognise
one rather than 16 plug-in
peripheral cards. The code to
search for them had been
written incorrectly — in such a
way as to only test for one
card, then give up!

The latest version of the
QL’s ROM is JS which has 25
new keywords added to allow
error trapping in conjunction
with the construct ‘WHEN
ERRor’ which is now
implemented. Sinclair
Research insist that these
features are provisional and

BL[GS
A Historical Perspective

packages included and the
facility to multi-task machine
code programs using user-
defined screen windows.

It was obvious that with so
much to offer for £400, the QL
was an ambitious project and
it was unfortunate that it was
launched with so much media
hype in January 1984 when it
wasn’t ready for despatch
until six months later!

Naturally, machines were
rushed-out to try and meet

each deadline and this
generated a string ofRead-
Only Memory (ROM) releases
as each batch of QLs was made
slightly better than the
previous.

The ROMs are actually
named after Sinclair Research
engineers and the two-letter
codes can be examined by
typing PRINT VER$ at the
QL’s keyboard. The firmware
has so far been throug i four
metamorphisms z the first

Listing 1 00370’ Run-time modules

00100 a SuperOASIC eutensionc to provide: 00390

00110 *
00390 0005: CNPA.L 03,05 Were aoy paraeetero provided?

00120 a
00400 ONE ERRP Yes, report Bad parameter error

00130 * 1) A new fuoctioo 0005$ to returo the 0005 release nuiher 00410 WOOED *6,01 Reeerve 6 bytes oo arithmetic stack

00140 a 21 A commaod CALL to replace the faulty (pre-JS’) RON-based versioo. 00420 NI0EA.W 0110,00 I Required vector

00150 e
00430 350 00) Call routioe

00160 * COPYR100T Ic) April 1995, Alas Turnball, O.Sc. 00440 *000.1 NOO5OIAI),A1 Oct arithmetic stick pointer

00170 a
00450 5600.1 *6,01 Rake room for string

00190 a
00460 NIVE.W *4,$0f(A6,Al.Ll Put length of string us stack

00190 LEA EOTENSIONSIPC),AI Point to list of enteusinos 00470 NOV00 *0,00 Get sfetem infurmatioo

00200 *OVEA.W 0110,00 Vector for linking—in eatensiuns 00490 TRAP NI Call routine

00210 350 (00) Call routine 00490 *000.1 02,f02IA6,01.L1 (Put BOOS rpleaee cede ou stack

00220 RTS Return to Super005IC 00000 MOVE.L 01,00050(06) Reset arithmetic stack puinter

00230 I
005(0 *0000 11,04 Sigoal string result

00240 I Table of entension definitions
00520 RTS Return to caller: successful

00250 a
00530 ERR_RP: ROVEG 1—15,00 Signal Bad parameter

00260 COTENSIONS: 00.1 1 Number of procedures 00540 OTS Report error

00270 OC.W CALL-c Offset of starttof routine 00550 CALL: *0000* fllO,00 1 Vector to get long cord integer

00290 00.0 4 Length of name 00560 350 lAO? Call routine

f0200 OC.0 CALL Name of procedure 00570 ONE CALL_RET Report error if unsuccessful

00300 OC.W 0 End of procedures oofo
-

LSL.L t2,03 Oct number of long curd parameters

ff3lf 00.1 I Number of functions 00590 OEO ERR_OP Report errur if no parameters

00320 DC.W 0005-I Offset of start of routine 00600 000.L 03,10059 106? Reset arithmetic utack

ff330 00.0 5 Length of uaee 00610 *000.1 fOO)AN,Al,L1,—(A7(Put start address of routine on stack

00340 00.0 00051,0 Name of function aith padding 00120 R000M.L N04(A6,Al.L?,01—O7IAf—A5 Place parameters in procesuur registers

00350 00.1 0 End of functions 00130 MOOEO *—l5,00 Preset error flag

00360 *
00640 CALL_RET: 0T5 Either returu aith error or jump to CALL

1O/QL User/October 1985

liable to change at any time.
Anyway, the main bug is
corrected so that the QL can
now recognise 16 peripheral
cards although you still need
the as yet unreleased QL
Motherboard. Also, the
number base conversion so-
called ‘utility’ vectors which
were actually not much use at
all now work!

Version JS (which I am now
the proud owner of— I
graduated from an ATh was
released in February 1985 and
contains QDOS version 1.10
which follows on from 1.02
and 1.03 and contains an extra
entry to TRAP #$O1 with
DO=$24. This new trap
allows the console messages
including the error reports to
be re-vectored and also allows
the QL’s character set to be
altered for use in foreign
countries. In fact the new
SuperBASIC command TRA
which is short for ‘translate’
simply calls this TRAP.

Not only the firmware has
changed regularly either. The
hardware has had problems —

repaired version AH QLs now
come back with discrete
components soldered across
connections on the main board
and the customised
Uncommitted Logic Arrays
(ULAs). No doubt there are
decoding problems which
Sinclair Research has kept
quiet about. Recently, Psion
has got its act together with
the release of proper versions
of its bundled software.

All these changes in the

state of the QL package have
had an effect. The counter
assistant in the computer
department of my local branch
of a well-known chemists told
me recently that he was
getting people coming in
demanding QLs with version
D12 hardware, version JS
firmware and version 2.00
Psion software before they
would part with their money!
He said this had meant he had
to tighten-up the shop’s
quality control. This freedom
of information on Sinclair
products perhaps upsets the
shops but it is ultimately good
news for the customer.

So where does the QL stand
now? Actually, it is still not
finished and Sinclair Research
plan to release version 2.00 of
QDOS soon. I deduced this by
having a sneak look through
the code of QL Toolkit — it has
a test for the release code of
QDOS and an assembly
instruction such as:

CMPI.L #‘2.OO’,D2
is a bit of a giveaway!

Version 2.00 of QDOS will
have two extra entries to
TRAP #$03 - with DO=$4A
and DO=$4B. The first one
will allow the renaming of a
directory based file and the
second will truncate a file by
chopping off the portion
between the file pointer and
the end of file. Also, certain
TRAP #$02 operations are
upgraded — TRAP#$02 with
DO=$O1 and D3=$03 will
open a file for overwriting as
promised in the QDOS

Manual and TRAP #$02 with
DO=$02 (the CLOSE
operation) will ‘datestamp’ a
file by making an entry in the
update date in the file’s header
as also indicated in the QDOS
Manual.

Listing 1 shows an assembly
language program to provide a
new SuperBASIC function —

QDOS$ — which returns the
current QDOS release number
as a 4-character string in the
format ‘n.nn’. Also, a
correction of the infamous
CALL bug is provided by
simply designing a
SuperBASIC extension with
the same name as the
command in ROM — the one in
RAM gets linked-in to the
system later and replaces the
ROM definition. This method
can be used to re-define all the
keywords in the ROM if you so
wish!

Listing 2 provides a
SuperBASIC program to
implement the code in
Listing 1.

In early versions (pre
version 1.10 QDOS) of the QL,
the CALL command will fail
when used from within large
SuperBASIC programs
because word rather than long
word addressing is used in
indexes. My bug correction
simply copies the ROM
definition but changes the .W
indexes to .L.

Li$ting 3 shows a useful
table of addresses. The run-
time module address of each
keyword in the three main QL
releases is listed to aid your
understanding of your
particular version of the QL.

Meanwhile, keep your eyes
peeled for version 2.00 of
QDOS.

Perhaps the two letter code
returned from VER$ will be
FF — Finally Finished!

Listing 2
100 REMark SuperBASIC program to implement assembly language in Listing 1
110 REMark COPYRIGHT Ic) August 1985, Alan Turribull, B.Sc.
120
130 LET reserved_addressRESPR)256)
140 LET addressreserved_address
150 RESTORE
160 REPeat read_and_store_data
170 IF EOF THEN EXIT read_and_store_data
180 READ machine_code_byte
190 POKE address,machine_code_byte
200 LET address=addres+l
210 END REPeat read_and_store_data
220 LET rom_ver$=VER$
230 IF rom_ver$(1 TO 2)FB’ OR ro._ver$)1 TO 2) PM THEN PRINT Return OL to Sinclair’iSTOP
240 IF rom_ver$(1 TO 21= AS OR ronverlt TO 2)JN THEN POKE_W rmserved_address+156,458
250 IF rom_ver$)1 TO 3) JSU’ THEN POKE_U reserved_address+156,462
260 IF rom_ver$)1 TO 2)(YJS AND rom_ver$)I TO 2)<>MG THEN PRINT ANew RON — contact me throug

IlL User: STOP
270 CALL reserved_address
280 STOP
290
300 DATA 67, 250, 0, 42, 65, 250, 0, 114, 35, 72
310 DATA 0, 0, 65, 250, 0, 110, 35, 72, 0, 4
320 DATA 65, 250, 0, 102, 35, 72, 0, 20, 65, 250
330 DATA 0, 94, 35, 72, 0, 28, 114, 0, 112, 7
340 DATA 78, 65, 78, 117, 0, 0, 0, 0, 0, 0
350 DATA 0, 0, 0, 0, 0, 94, 0, 0, 0, 94
360 DATA 0, 0, 0, 94, 0, 0, 0, 0, 0, 0
370 DATA 0, 94, 0, 0, 0, 0, 0, 0, 0, 94
380 DATA 0, 0, 0, 94, 0, 0, 0, 94, 0, 0
390 DATA 0, 94, 0, 0, 0, 94, 0, 0, 0, 94
400 DATA 0, 0, 0, 94, 0, 0, 0, 94, 0, 0
410 DATA 0, 94, 0, 0, 0, 94, 0, 0, 0, 94
420 DATA 80, 143, 78, 115, 70, 252, 39, 0, 42, 121
430 DATA 0, 2, 128, 32, 65, 249, 0, 2, 0, 0
440 DATA 32, 60, 0, 0, 132, 127, 66, 24, 81, 200
450 DATA 255, 252, 32, 124, 0, 0, 1, 204, 78, 144

Listing 3
Keyword Run-time module addrerres or •ac, rain RON rrl.are.

COPYRIGHT (c) Apr11 1985. Alan Turnbull. B.Sc.

I Keyword I AH RON I M RON I ‘JS RON I
18008 vi 02) 1 0009 vI 03) 1 WOOS vO 10) 1

1 I 1 I
PRINT 1 28586 28662 I 30376 I
RUN 1 30232 I 30322 1 32164 I
STOP 1 30334 1 30424 1 32266 I
INPUT I 28584 28660 I 30374 1
WINDOW I 30646 1 30736 1 32638 1
BORDER 30684 I 30774 1 32678 1
INK 28384 I 28440 1 30154 I
STRiP 1 28368 I 28444 1 30158 I
PAPER 1 28372 I 28448 1 30162 1
BLOCK 1 30660 30750 1 32652 I
PAN 28406 I 28482 1 30198 I
SCROLL 1 28410 I 28486 1 30200 1
CSIZE 1 24756 I 24828 I 26274 1
FLASH I 26028 1 26098 1 27564 1
UNDER 26020 1 26092 1 27558 1
OVER 26048 1 26120 I 27588 1
CURSOR 24792 1 24864 1 26310 1
AT 24806 1 24878 1 26324 1
SCALE 26100 26172 : 27638 I
POINT 1 26118 26190 1 27658 1
LINE 1 28138 26208 1 27674 1
ELLIPSE 1 26160 1 26232 1 27698 1
CIRCLE 26160 I 26232 1 27698
ARC 26240 I 26312 I 27/78 I
POINT_R 1 28122 1 26194 I 27660 1
TURN 1 30416 1 30506 I 32408 1
TURNTO 1 30408 1 30498 I 32400 I
PENUP 1 30474 1 30564 1 32466 I
PENDOWN 30478 1 30568 1 32470 1
MOVE 1 30492 1 30582 1 32484 I
LIST 28036 I 28112 1 29824 I
OPEN 1 25926 I 25998 1 27484 1
CLOSE 1 25892 I 25?o4 1 27430 I
FORMAT I 25714 I 25786 1 27252 1
COPY I 2574K’ 1 25812 I 27278 I
COPY_N 1 25744 I 25816 I 27282 I
DELETE I 25570 I 25642 1 27110 I
DIR 1 25576 I 25648 1 27116 I
EXEC I 25246 I 2518 I 26764 I

QL User/October 1985/11

EXEC_W 25250
LDYTES 25360
SEXEC 25414
EGYTES I 25418
SAVE I 25984

I MERGE 30270

MRUN 30280
LOAD 30312

I LRUN I 30318
NEW 30330

1 CLEAR 30220
OPEN_IN 25930
OPEN_NEW 25934

I CLS 28402
I CALL 1 24540

RECOL I
RANDOMXEE 29318
PAUSE I 28490
POKE I 28526
POKE_N 28534

I POKE_L 28540
881.18 24308
BEEP 24368

I CONTINUE 1 30404
RETRY 30394
READ 25200

I NET 29336
MODE I 28308
RENUM 29628

I DLINE I 28006
SOATE 25006
ADATE 24986
LINE_R 26140

I ELLIPSE_A 26164
CIRCLE_R 26184

I ARC_R 26244
AUTO 29582
EDIT I 29578
FILL 25990

I WIDTH 30624
I REPORT -

I TAR I -

ACOS 30860
ACOT 1 30866

I ASIN 30872
I AlAN 30878
I COG I 30684

COT 1 30890
EXP 30896

I LN I 30902

I 25322
1 25432

25486
25490
26036

1 30360

I 30370
30402
30409
30420

I 30310
26002

I 24006
28478
24612

I 29626
29408
28566

1 28602
28610
28616
24380
24440
30494

I 30484
I 25272

28412
28384

I 29714
2 28092

25078
25058
26212
26236
26236

1 26318
1 29672

29688
26062
30714

30950
30958
30962
30968

I 30974
I 30980

30984
1 30992

1 26768
2 28886

26940
28944
27500

I 32202
32212
32244
32250

I 32262
2 32152
1 27468

27472
30192
26059

I 31438
31128
30280

I 50314
30324

2 30339
1 25826

25886
32334

I 32326
26718

I 30124
30094

1 31524
29794

1 26524
26504
27678
27702
27702

I 27782
31482
31478
27528
32616
32120
32344

I 32852
32858
32884
32870
32876

1 32882
32888

1 32894

I I

I I

I I
Ii

I I

I I

II
I 1
Ii
Il
I I

I I
II
11
I I

I I
I I

I I

LOIIIO
S1N
SORT
TAN
DEE
RAD
AND
1 NT
AES
P1

PEEK
PEEK_N
PEEK_L
RESPR
EOF
INKEYs
CHR$
CODE
)(EYROW
BEEPING
LEN
DIMN
DAYs
DATE
DATES
FILLS
VEIlS
ERR_NC
ERR_NJ
ERR_ON
ERR_OR
ERR_BO
ERR_NO
ERA_NF
ERR_EX
ERR_Ill
ERR_CF
ERR_OF
ERR_8N
ERR_TE
ERR_Fl’
ERR_BP
ERR_F E
ERR_XP
ERR_OV
ERR_NI
ERR_RO
ERR_BL
ERNUM
ERLIN

I 30909 1
1 30914
1 30920 1

I 30928 1
I 311932 I

I 30938 I
1 31010 ,1
1 31110 1
1 30970 1
1 31098 I

1 31134 1
I 31142 1
1 31152 1
I 31184 I
1 31220 1
1 31274 1
1 31360 I
1 31476 1
1 31814 1
I 31208 1
1 31456 1

3i5j 1
I 31490 1
1 31596 1
1 31684 I
1 31379 I

31258 1

30998
31004
31010
31016
31022
31028
31100
31200
31060
31186

31224
31232
31242
31278
31310
31384
31450
31570
31708
31298
31548
31810
31784
31690
31778
31468
31348

32900 1
I 32906
1 32912 I
1 32918 I
1 32924 1
1 32930 1
1 33002 1
I 33108 I

1 32962 I
1 33090 I

1 33132 1
I 33140 1
1 33150 1
1 33186 1
1 33224 1
1 33294 1
1 33382 1
I 33502 I
1 33846 1
I 33208 1
1 33490 I

33542 I
1 33722 I
1 33622 1
1 33716 1
1 35400 I
1 33266 1
1 33808 1
I 33806 I
1 33804 I
1 33802 1

33800 1
1 35798 1
1 33796 1
1 33794 1
I 33792 I
1 33790 I
1 33788 1

33786 I
I 33784 1
1 33782 1
1 33780 1
I 33778 1
1 33778 1
1 33774 1
1 33772 I
1 33770 1
1 33768 1
I 33882 1
1 33896 1

EIDERSOFT MEANS BUSINESS
Eldersoft- is pleased to announce a range of hardware and software packages for the professional QL User.

EIDERSOFT DISK SYSTEM ARCHIVER

Eldersoft 3.5 inch QL Disk Systems are in a class of Archiver is a collection of business programs for the

their own. Each system comes complete with a Psion ARCH IVE’ Database. Archiver programs are

package of software that includes l.C.E. (see our open to the user and can be modified to suit individual

colour advertising), backup routines, a disk database requirements. Archiver includes programs for

and much more’1 What’s more the system is fully INVOICING, STOCK CONTROL (linked),

guaranteed and professional help no more than a APPOINTMENTS and MAILING* as well as many

phone call away. useful Archive routines.

o SYSTEM 1128K RAM, Ram Disk, Parallel printer * NOW with QUILL’ MAIL MERGE!

port with buffer, I.C.E. + full software, 2 disks, Incredible Value @ £18.95 + £1 P&P
Ifl TWIN 3.5 Disk Drives with built in PSU and all
Cd leads and accessories.

o COLOUR Matching QL Black
q SYSTEM 2 As above with 256K Extra RAM and
U) many additional toolkit commands.
Cd SYSTEM 3 As 1 but with 640K RAM *requires

o return of QL for 7-10 days.
Full inspection of these high powered units available by

appointment

PRICE INCLUDES 24 Hour Delivery
-- MANY SOFTWARE TITLES

NOW ON DISK**
Please telephone

QSPELL
QSPELL is the onlyy speling checker availible for Psion
QUILL’. It contains a diction nary of 25000 words and
allows you to add 1000 more. The multi-tasking Editor
lets you edit your documents in Quill and fullyhighlights
mistakes. Fully menu driven with inbuilt help screens.

At only £19.95 + £1 P&P iVs at least a 1/4 of the price of similar

specification checkers”.

PROBLEMS WITH POWER SPIKES?
The Power clean Masterplug not only filters the mains,
but provides 4 neat fully fused minature sockets to tidy
up wiring. It comes complete with a moulded 13 amp
plug. (grey) ONLY £24.95 complete.

CREDIT CARDS PHONE 0708 852647 THE OFFICE, HALL FARM, N. OCKENDON, UPMINSTER ESSEX, RM14 30H

Please supply I.C.E. (c49.95 + £1.50 P&P) / QSPELL(1g.g5 + £1 P&P) / ARCHIVER(18.95 + £1 P&P)

MASTERPLUG POWER CLEAN (24.95 + £1 P&F) I LABELS KIT (24.95 + P&P)

DISK SYSTEM 1 (520 inc.)/ DISK SYSTEM 2 (540 inc.) / DISK SYSTEM 3 (630 inc.)

Please supply further information on C disk systems C memory expansion C software (state title/s)

NAME STREET TOWN

POSTCODE M/DIDISK(State type) COUNTY

I enclose a cheque/PO made payable to Eidersoft for £ QUILL and ARCHIVE are the Trade Marks of PSION LTD

12/QL User/October 1985

S
inclair produced at least seven
versions of the QL ROM the
collection of built-in routines
which look after Basic and
machine code programs. Five

of the ROM versions are still considered
current, yet they vary enormously in
functions and reliability. To check the
version of your QL, turn it on without a
tape in drive 1, press Fl or F2, and type
PRINT VER$. A two-or three-letter code
will appear at the top of the screen.

This article compares the features or,
to be more honest, the bugs in current
OL ROMs and explains how all the ver
sions came into existence in the first
place. Next month I will list the universal
bugs in every QL ROM regardless of vin
tage and explain how to get around
them.

This litany may make the QL seem
rather a disaster but that is not really fair.
The first QLs were unfinished and bug-
ridden as a consequence but later ver
sions are no worse than the average
Amiga, ST or PC. All complex systems
contain bugs but hardware manufactur
ers are curiously shy about admitting
and correcting. In fact, bugs are rarely a
problem if you know about them and
can avoid them. This information is
based on my experience, the Sinclair
bug list and reports from QL users. If you
have found any I have missed, please
send details.

Team effort

In 1983 the QL ROM was planned as
a team effort. The operating system was
to be written by the Cambridge prog
ramming house GST, while Sinclair staff
contributed code to handle devices and
the new Basic interpreter. SuperBasic
was designed originally in 1982 for the
SuperSpectrum, one of the many
Sinclair designs which never passed the
drawing board stage.

On January 12, 1984, long before the
QL hardware and software were
finished, Sinclair launched the QL in
London. The prototype machines at the
launch used the GST 68K/OS operating
system but Sinclair never shipped a QL
in that form.

The original plan was to squeeze
SuperBasic and the QL operating sys
tem into 32K of ROM. At first only afrac
tion of SuperBasic was to be built into
the QL — just enough commands to load
and run the Psion Packages. Most of the
language was to be loaded as required.
from Microdrive; almost all the standard
SuperBasic commands and functions
are still implemented as extensions,
although they are built-in to current
ROMs.

Sinclair abandoned the GST operat
ing system because it was slow and
greedy for memory; it did not leave suffi

18

cient space for SuperBasic in ROM or
the Psion packages in RAM. GST
released 68K/OS independently as a
32K plug-in option at the end of 1984.

The first production QLs contained
two-thirds of a stop-gap operating sys
tem, Qdos, written by Tony Tebby, a
Sinclair engineer who had originally
been hired to work on satellite TV
hardware.

The other one-third of Qdos and
SuperBasic was supplied in an ugly
plug-in cartridge — ‘the kludge’. It had
been impossible to squeeze the
required code into 32K so Sinclair put an
extra 16K outside the computer. All the
software was in expensive, individually-
programmed EPROM chips, rather than
mass-produced ROMs.

The version number of Qdos jumped
suddenly from 0.08 to 1 .00 when the
first production QLs appeared but that
was more brave than honest; the code
was still being developed in April, 1984
as those machines slipped out. There
were amazing bugs. You could not edit
a ‘bad line’. PRINT -2 - 2 gave zero.
Basic programs could not exceed 32K.
There were error-trapping keywords but
no code to handle them.

Special tokens to allow array initialisa
tion survive from that time but they have
never worked; they are left-overs from
the initial SuperBasic designs. READ,
DATA, GOSUB and RESTORE had
been added at a late stage, to make the
original, elegant design more standard.
The last-minute changes provoked a
flood of problems.

Sinclair gave each ROM version a
two-letter code. First was Qdos 1 .00,
the largely-untested “FB” version. The

next major version, “PM”, was faster
and more tolerant of the Microdrives but
it was still laced with faults. At that stage
new versions, such as “EL” and “TB”,
were popping up inside Sinclair every
week.

In all 13,000 kludged QLs were pro
duced but in June, 1984 the so-called
final QL ROM emerged, the “AH” ver
sion. By that time Sinclair had stopped
naming ROMs after taxi-drivers and
started picking on women in the office
— “AH” stood for “Angela’s Holiday”.

The “AH” ROM was really three 16K
EPROM chips. The plug-in kludge was
avoided by soldering two chips piggy
back in one socket. The chips contained
Qdos 1 .02, the first usable version of the
QL built-in software. It was about 20
percent faster than “FB”; since then,
code speed has changed very little. The
“AH” ROM and the mass-produced fol
low-up “JM” were supplied as a free
upgrade to those with kludges.

Exceptional bugs

“AH” and “JM” were very similar. Only
four bugs were exceptional to “AH”.
None was serious at the time, although
two are worth bearing in mind if you
have an expanded QL system.

If two tasks tried to read a file simul
taneously, the second would miss the
beginning and read the directory header
instead. At the time that was fairly
academic as there were no multi-task
ing programs on the market. Floating
point arrays were limited to 384K in size
but memory expansion was not availa
ble in those days.

The other two bugs fixed between

Buggiiig
the.
I

Compiler Simon Goodwin summarises the bugs, features

and international variations which lurk inside each QL ver

sion and explains how you can upgrade your ROM.

SInclair/QL World August 1987

“AH” and “JM” were trivial X=”.” Set Xto
zero under the “AH” ROM, instead of
giving an error, and you could type-in
integer FOR loops, although they would
not work unless you changed the vari
able name to a floating point type. The
correction for this bug was scarcely an
improvement; rather than make integer
loops work properly, “JM” and later
ROMs will not let you type them in at all.

The “JM’ software was the first to fit
into two chips, using the space allo
cated originally on the QL circuit board.
The first socket was intended for a 16K
chip but on “JM” systems it held a 32K
component. The second socket held
the remaining code in a partly-used 16K
chip.

Upgrades from ‘AH” to “JM” or later
ROMs are not a simple matter of swap
ping components. Unfortunately the
control signals required by three
EPROMs are not the same as those
needed by two ROMs. I have converted
my QL from EPROM to ROM; it is fiddly
but not too difficult if you are used to
messing around inside computers. If
not, you should get a QL repair firm to do
the job for you — it is easy to write off a
QL by damaging the circuit board.

Turn off the power, then unplug the
EPROMs, which are behind the CTRL
connectors in sockets labelled 1C33 and
lC34. Disconnect the trailing wire to the
top EPROM; it is needed only to provide
an extra signal for the third chip. Then
plug the 32K ROM — marked ‘0000’
after the version number — into the slot
for lC33; the other ROM, marked
8000’, goes into the other socket.

There are six positions for wire links to
the right of 1034, labelled JUl to 6. The
first two are connected for EPROMs; to
use ROMs you must cut link 1 and con
nect links 3 and 4. Finally, unplug the
chip labelled SN74LSOON immediately
to the right of the links; it is needed only
byEPROMs

The upgrade from “AH” to ‘JM” is
fiddly and does not fix many bugs. The
next version of Qdos is a more popular
upgrade, although it creates almost as
many bugs as it cures. Early in 1985,
Sinclair began shipping Qdos version
1.10, the “JS” ROM. At first it was
claimed to be a development version,
not intended for release. That may well
have been the case but tens of
thousands of ROMs were made. The
“JS” ROM is the last version used in
machines made for sale in Britain.

The “JS” ROM killed several annoying
bugs of previous versions. It was the first
to let you INPUT strings of more than
128 characters from Basic; it also han
dles CALL correctly in programs of more
than 32K which usually crashed a
machine running earlier versions.

The “JS” ROM can change the display

mode without setting the ink and paper
in SCR windows to black and lets you
define new procedures and functions
with names you have used previously in
the same program.

Machine code programmers will be
pleased to find that the bugs in the
number-base conversion routines vec
tors 260 to 270 have been fixed. Task
handling is more friendly; you do not
have to type Control C to retrieve the
SuperBasic cursor when a task stops.

The “JS” ROM is the first version
which can link more than one plug-in
device into the system when you turn it
on. QL devices can use a 256K area
divided into 16 slots for ROM and port
addressing. Those slots are used by
disc controllers, sound boards, mod
ems, and so on. Previous ROMs linked
only one device into the first slot, how
ever many were connected.

This bug was not serious. Most users
have only one such device, a disc;

expansion RAM does not require a slot.
Many peripheral designers avoid the
problem by putting a routine to link other
devices in their own start-up code, so
that the one gadget which is called can
look up the others. Such a routine
appears in chapter 9 of Andy Pennell’s
Sinclair Qdos Companion.

The other changes in the “JS” ROM
are less helpful. The revised Basic pre
vents you entering integer and string
SELect statements, which did not work
anyway unless you had a compiler. Even
the ROM version function, VER$, was a
problem. In the process of changing an
“M” into an “S”, Sinclair stopped VER$
allocating memory for the value it
returns. The machine may crash if you
try to test VER$ without copying it to a
temporary variable first. T$=VER$ IF
“JS”=T$ will workwill but IF “JS”=VER$
stops the “J5” ROM in its tracks.

Parameters and SELect fell out in the
“JS” ROM. It will not let you use a proce
dure parameter as a SELect variable
unless it is the last one in the DEFinition.
You must copy the value to another vari
able to avoid a ‘bad name’ report.

From the start, QL ROMs contained
WHEN keywords to trap errors and
monitor variable values. At first they did
nothing at all; on ROMs from “JS”
onwards they sometimes work and
sometimes they just crash the machine.

Sinclair has been understandably
reluctant to explain how WHEN trapping
should work, as it never produced a QL
ROM which can do it properly. Appa
rently it persuaded Jan Jones, author of
the interpreter and The Definitive Super-
Basic Handbook, to omit a chapter on
WHEN handling from her otherwise-
definitive tome.

The idea is to put a WHEN ERRor
statement somewhere in your program,
followed by program lines to be exe
cuted in the case of an error, and

(1

Suwlaix/QL World August 1987

rounded off with an END WHEN state
ment. The computer keeps track of the
most recent WHEN ERRor block and
jumps into it if an error occurs, without
printing the usual cryptic message or
stopping the program.

You check the line and type of the
error by reading the values of new func
tions ERLIN and ERNUM. ERNUM
returns internal error codes between -1
and -21. Other functions let you check
for a given error, without knowing the
internal code; ERR NC is true if the error
was ‘not complete’, ERR BN indicates
bad name’ and so forth. Unfortunately
someone typed a BRA where they
should have put a BSR, so any attempt
to check ERR DF, ‘drive full’, crashes
the “JS” ROM.

The new REPORT procedure prints
standard error messages. If you already
use that name, or any of the other new
ones, in your Basic, you will have to
change it. REPORT on its own indicates
the last error with a message to channel
0. Codes from -21 to -27 call up other
text; REPORT -24 gives ‘Fl. Monitor
F2..TV’, for example.

No check

There is no check on the number you
supply but only 27 messages are in the
standard format, so beware. REPORT -

28 and its brethren print a very long
string of gibberish. REPORT 1 ,-19 prints
‘not implemented’ to channel 1; -19 is
the polite code a routine should use to
indicate that it does not work yet.

The code for WHEN ERRor is not usu
ally that kind. Errors in functions often
crash the machine if WHEN trapping is
in force; SORT of a negative expression
will do the trick, as will INKEY$ at the end
of a file.

WHEN ERRor is extremely persistent
you can type LOAD or NEW and the
computer will still try to trap your errors
to a non-existent routine. Similar prob
lems occur if you delete an active WHEN
statement or type one as a direct com
mand.

Tony Tebby’s Supertoolkit clears
WHEN after commands like NEW and
LOAD and fixes the ERR DF mistake but
it cannot help with the other problems.
The Digital Precision Turbo compiler
gives you reliable WHEN ERROR trap
ping anywhere in a program, on all QL
versions, but of course it does not fix the
interpreter.

Another WHEN option in the “JS”
ROM lets you monitorariable values. A
block starting WHEN VAR’lO will be
executed only when the condition
becomes true; every time VAR is set
Basic checks the new value and calls
the WHEN routine if the value of VAR
exceeds 10. Unfortunately this does not
work reliably on any OL version either;

sometimes it gives a ‘bad name’ report
or calls the routine more than once.

The last new command for the “JS”
ROM is TRA. This makes it easier to cus
tomise OL software for use in other
countries. TRA normally has two
parameters. The first points to a table to
be used to TRAnslate characters sent
through the serial ports and the second
is the address of a new error-message
table. Both tables must start with the
‘nonsense’ word value 19195, which
crops up all over the QL system as an
indication that ‘data follows’.

The next two words in the serial table
contain the offset to two translation lists,
measured from the start of the table.
The first list starts with a 256-byte list of
substitute codes for each character
code from 0 to 255. When a öharacter is

to be transmitted it is looked up in the
table and the code from the appropriate
place is transmitted instead; you can
translate the OL end-of-line marker,
CHR$(10), by POKEing 13, the usual
code for carriage return, into the
eleventh byte of this list.

Put the value zero into the appropriate
slot in the first list if you want to translate
one code into a sequence of several
characters. They appear in the second
list, which the OL uses only when trans
mitting serial data — there is no time to
use it during input.

The second list starts with a byte
value, the number of four-byte entries in
that list. Each entry after that starts with
the code to be translated, followed by
three replacement codes. If you need
only two replacement characters, the
last code in a group should be zero.

The message table is simpler. After
the 19195 there are 29 words, each
holding the offset from the start of the
table to a message. The messages are
stored as normal OL strings — a word
length, at an even address, followed by
the appropriate text. Beware — the last
two messages are sequences of three-
character day and month names, with

no length word. That is why REPORT -

28 goes haywire.
If either parameter of TRA is zero the

corresponding table is left alone. TRA 1
sects the standard message table and
allows characters to be transmitted
through the serial ports unmolested.

Turbo Toolkit contains an example
program which uses TRA to translate
Sinclair error reports into plain English;
other TRA demonstrations have been
printed in the user-group magazines
Quanta and Quaser.

A special version of the “JS” ROM
was produced for American OLs, which
must be compatible with the rather fee
ble National Television Standards Com
mittee TV standard. The American ROM
had a three-letter name, “JSU”; it con
tains all the “JS” ROM bugs and fea
tures, plus changes which you should
bear in mind if you develop programs
which may be used in the States.

An American television set can dis
play only 192 lines of pixels. In TV mode

.the American OL hardware ignores the
first and last 32 lines of screen memory;
in monitor mode it works with the usual
256 lines. American OL owners can
swap between U.K. and U.S. TV lineage
by POKEing 1 or 2 to address 163890
and typing NEW.

You still get 20 lines of text into a stan
dard TV mode window, as the character
set in the ‘JSU” ROM has been crushed
vertically. Characters are drawn on an 8
by 5 dot matrix, rather than the 10 by 5
used on European systems. In monitor
mode the crushed characters are still
used but they are spaced by an extra
two blank lines; rows of text are the nor
mal height but look like a ransom note.

Another change compensates for the
different shape of dots on an American
display. The OL graphics co-ordinate
routines compensate for the shape of
each dot so that circles do not look ellip
tical and squares do not appear as
rectangles. Routines which use pixel co
ordinates, such as WINDOW and
BLOCK, do not perform any compensa
tion, which is why vertical and horizontal
units are different.

Atlantic ROMs
European and American ROMs use

different compensation factors, so that
graphics shapes look the same on either
side of the Atlantic. Unfortunately there
is no way to compensate for the differ
ence in BLOCK and WINDOW shapes.
Many programs use a mixture of
graphics and pixel co-ordinates; they
may look satisfactory on one side of the
Atlantic but they will not line-up properly
across the water.

Things are still tricky, even if you stick
to one co-ordinate system. If you work
entirely in graphics co-ordinates your
shapes will not be distorted, although

“‘.‘., ..(,

Sinclair/QL World August 1987

they may escape off the edge of the
screen. If you use pixel co-ordinates
everything will fit on the display but the
vertical and horizontal proportions will
be different on an American screen.

Sinclair’s last fling was Qdos version
1.13, which usually crops up in “MG”
ROMs. They have never been supplied
in the U.K. although the chips work well
in a British machine. The “MG”ROM has
only one new bug and kills several
important faults in previous versions.

First, the new bug. The “MG” ROM
line-drawing routine does not always
plot the point at the end of a line or arc,
so that one-pixel gaps may appear at
the corners of graphic drawings. If that
disturbs you, a ‘patch’ program to cor
rect the bug is available free from Qsoft,
P0 Box 56, DK 4000, Roskilde,
Denmark. Send a disc or cartridge for
the program and an international reply
coupon for return postage.

Serious bug

The most serious OL filing bug has
been fixed in the “MG” ROM. The Micro-
drive system does not hang up, stalling
the computer, if file access is performed
when the system is very short of mem
ory. The QL file system uses spare RAM
to buffer information en route between
Microdrives and your program. The
“AH” and “JM” versions could get stuck
in a loop if the free memory fell to 1 K,
because the multi-tasking Microdrive
handler would over-write the current
block with new information before the
application program had time to digest
the original data. That is a common
cause of failure when RAM-hungry
Psion packages are used.

Sinclair tried to cure the problem in
the “JS” ROM but managed only to
fudge things so that all was well until
there were just 512 bytes of free RAM —

not much of an improvement.
Unless you have an “MG” ROM, it is

worth performing a check for free mem
ory before Microdrive access. This func
tion returns the amount of space free for
Microdrive buffering:

DEFine FuNction BUFFER
SPACE RETurn PEEK L(1 63856)
-PEEK L(1 63852)
END DEFine BUFFER SPACE

The “MG” ROM is the first to be able to
close the second serial port, SER2. Ear
lier ROMs used to close SER1 instead
whenever you tried to close SER2.

Apparently the “MG” ROM is the first
to work correctly on a QL with eight
Microdrives. I suspect such systems are
rare, even though Spectrum Micro-
drives will work if plugged into the QL
extension drive socket. It is claimed that
earlier ROMs used to forget about
MDV2 after you had used MDV8.

“MG” SuperBasic has been
thoroughly spring-cleaned. You can use
any number of parameters and LOCALs
in a procedure or function. Previous ver
sions of the Basic allowed only enough
space for nine such names. If you used
more, the program could lock up or be
corrupted by the appearance of spuri
ous PRINT keords in place of names
towards the end of the program. That
knowledge may help you to spot prog
ram listings which were improved by
their authors, untested, before publica
tion.

The “MG” system is less prone than
its predecessors to use up RAM as a
program runs. Earlier ROMs lost track of
some memory every time a slice of a
dimensioned string array was passed as
a parameter — PRINTed, for instance. if
that happened in a loop, as usual, the
program ran slowly, constantly grabbing
more and more memory, until it failed
‘out of memory’ discarding all variable
values. “MG” does not get into this
state.

The only way to recover memory lost
in this way was to enter CLEAR or
NEW,both difficult to do in a running
program. You could avoid the problem
by copying slices to temporary, undi
mensioned strings but that is a slow and
messy solution.

The RENUMber routine in the “MG”
ROM can cope with RESTORE stat
ments at the start of lines containing
DATA. Earlier ROMs used to
RENUMber DATA elements as if they
were line numbers. This bug was a
hangover from the days of the kludge —

the original RENUM totally ignored
RESTORE.

Any channel
The “MG” CURSOR command lets

you use graphics co-ordinates on any
channel. Other ROMs let you use only
four co-ordinates with the default chan
nel, channel 1. DATA values in brackets
no longer cause the other items on the
line to be ignored. CLS and PAN can
cope with windows narrower than the
cursor.

String comparison works properly on
characters with ASCII codes greater
than 127. Previously you had to check
the CODE of the character, rather than
compare the string correctly, to check
reliably for cursor, function and other
special keys.

The WHEN routines are still unfinished
in the “MG” ROM, although the trivial
ERR DF bug has been fixed. Daft
parameters no longer upset READ and
INPUT and you can OPEN and CLOSE
channels ad nauseam without the sys
tem complaining; older ROMs limited
you to 32,767 OPENs in a session,
which used to upset dreadful program
mers.

The “MG” ROM was designed for use
in continental Europe and is in several
versions, with key layout, characters
and messages customised for different
nations. The 32K ROM is the same for
each country and the 16K ROM holds all
the information, which varies between
versions. VER$ has an extra letter at the
end, to show the country — “MGE” for
Spain, or “MGS” for Sweden, for exam
ple. The dot in the Qdos version is
replaced by the country-code letter.

If you want to use a foreign-language
“MG” ROM it is easy to create a new set
of error messages using TRA but that
may not be sufficient. The French “MGF”
ROM expects a particularly odd key lay
out. “A” and “Z” swap places with “0”
and “W”, so the layout, like that of
French typewriters, is known as
AZERTY rather than QWERTY. The “M”
key is moved to where “,“ is normally
found, and the “s” key works as an extra
shift, putting a circumflex accent or an
umlaut over the next vowel typed. Sev
eral other characters are shuffled to
make space for accented letters.

The last Sinclair effort was the Greek
ROM. It works well in the U.K. as soon
as the error messages are changed
from their heiroglyphic Greek form
which, to be fair, is about as clear as the
original English. These ROMs use Qdos
1.13 but they are further developments
of the “MG” ROM and cannot be mixed
with other Qdos 1.13 chips. Greek
ROMs display their version as “Sigma
FP”,although the chips are marked
“EFP”;presumably the Sinclair Mexican
chip makers could not find a sigma
stamp.

The “MG” ROM is a great improve
ment on its predecessors but even so it
cohtains 30-odd unfixed bugs. Next
month I will list them and explain how to
circumvent them.

All the QL ROMs from JM onwards,
including JSU, are plug-compatible. All
you need to do the change versions to
disconnect the power and replace the
components in sockets 1033 and 1C34
with a different version.

“AH”, “JM”, “JS” and “MG” ROMs are
available in Europe from Adman Services,
53 Gilpin Road, Admaston, Telford TF5
OBG. Remeber that the wiring of the ROM
sockets must be changed if you switch to
or from version “AH”. The American
“JSU” ROM is supplied by Curry Com
puter, P0 Box 5607, Glendale, AZ
85312-5607, U.S.A.

SinclaixIQL World August 1987
1_

Beating

the

F
orty-six errors in early ver
sions of the OL operating
system were described last
month and I explained how
they could be fixed by ROM

upgrades. Now I list another 31 bugs
which crop up in every version of the QL
and tell you how to circumvent them. If
you have found others, please let QL
World know.

There is no easy way to define a bug.
It is well-known in the computer industry
that one person’s bug is usually some
one else’s feature. It is almost as well;
known that the person with the bug will
be a customer and the person with the
feature will be a marketeer.

In the absence of an industry-stan
dard definition of a bug, I have set out to
list all the quirks of the QL ROM which
cause apparently correct xograms to
give unexpected results, or no results at
all. I have also counted a few
undocumented restrictions. Any non
violent action which prevents the entry
of further commands is automatically
considered a bug, unless Sinclair speci
fically warns against it in the big black QL
User Guide.

That raises the question of how
should a bug be fixed? In some cases, it
is sufficient to detail the problem so that
people can avoid it. If you document a
bug, it is vital to tell users how to get the
result they want without getting into diffi
culty.

Another approach is to make it
impossible to reach the circumstances
which cause the problem. Integer FOR
loops did not work on the AH version of
the QL, so Sinclair changed later ver
sions so that you could not even type
them in. That approach may be justified
on grounds of expediency or efficiency
but often it is just an excuse for leaving a
real flaw uncorrected.

The last kind of bug-fix is a rare and

wonderful thing. It lets you do what you
originally wanted, in the way you
intended. That is the best for customers,
unless their original idea was a daft one,
but it is the most expensive for all con
cerned. It often leads to the introduction
of new problems, because a technique
which used to work is clobbered by the
fix, or because the correction passes
you to more faulty code.

This list deals only with idiosyncracies
of the QL ROM, the SuperBasic
language and the underlying collection
of operating routines called Qdos. Some
of these bugs can cause other prog
rams to fail. Software developers should
guard against the most common prob
lems by defensive programming in their
own code, which is why I have included
plenty of detailed technical information.

The problems are collected under two
headings. Input/Output bugs affect the
flow of information between the QL and
peripherals such as drives or the dis
play. SuperBasic bugs affect the execu
tive of QL Basic programs; many are
corrected if you compile your programs.

REASON: The SuperBasic interpreter
does not use the same format to store
loop details and simple variables.
Whenever a loop starts the old value is
thrown away and a new, zerod storage
area is allocated.

CURE: The best solution is to change
the variable name — it is poor program
ming practice to use the same name for
two logically-distinct purposes, in this
case as a terminal value and an instance
count. Nonetheless, there are times
when that may be convenient. Super-
Basic compilers do not have this bug, as
they analyse the program during compi
lation and allocate space for the value
and loop details from the start.

- -
..—. ,-,.4.__,

:,

-

•;4,—
I,’,. - -.

t -V.

a.
r

,;_- V..,

r .tltt. tfl=,_,

—•-l:

bugs

I Simon Goodwin concludes his survey of QL system bugs
with a summary of the faults shared by every QL,
regardless of vintage or nationality.

d

SuperBasic bugs
PROBLEM 2:The QL trigonbmetric

package gives silly results for COS
between 16384*PI radians — about.:

PROBLEM 1: When ãREPeat or FOR three million degrees and 65535
statement is encountered, the value of• radians. Greater values give n overflow
the corresponding identifier is set to error. For a weird result, type:
zero. For instance, this line prints five PRINT COS(60000)

values, 0 tO 4,. rather than 3 and 4, as
CURE use SIN(X+P1/2) instead ofyou would expect In any oher Basic:

X),ordo not do It. It is extremelyX=3:FQRX=X TO 4:PRINTX
The same problem occurs if the value unlikely that your program will fall foul of

ofXisusedtocomputetheeñd-pointof ‘the bug unless it has gone haywire, in
the loop, or thestep. which case it will probably run into the

overflow error. Three million degrees
should be enough for anyone.

•J:1Ilç 11L
IiiIi’L FIit]III.1aA I.

I I- [;]

IriptiGn t
-k while

óomplete

4
12 SinclaIr/QL World September 1987

REASON: The memory map in the
Concepts section of the QL User Guide
shows that the area of memory used by
RESPR fits between the top of RAM and
the first task loaded. Tasks may not be
moved, so you cannot expand the
RESPR area while any task is loaded.
SOLUTION: Use a toolkit function like
ALLOCATION or ALCHP to obtain
memory from the common heap at the
other end of the memory map. Compil
ers re-direct RESPR calls to the heap
automatically, since all compiled pro
grams run as tasks.

•PROBLEM 4: Every time soon as the system tried to use it. That

RUN”after a SuperBasic error does not explain why the ROM routine

BREAK — the system loses track loti
was partly-written in the first place and it
does not help people who use RESPR[another 16 bmemory. You do memory to store data such as character
sets, or machine code to be accessed

get this memory back until you

with CALL.
NEW.

CURE: Use toolkit functions to work
with space on the common heap.
ALLOCATION orALCHP will grab space
and DEALLOCATE or RECHP will
release it. Memory allocated by a com
piled task is usually released automati
cally when the task stops but you can
prevent this, if need be, with Turbo Tool
kit. Extension commands and devices
should always be linked from Super-
Basic with RESPR.

REASON: The system does not tidy
data allocated on the user A7 stack
when an error occurs after RUN.

CURE: Start your program with GO
TO instead of RUN. CLEAR and the Out
of Memory’ condition do not release the
space — you must type NEW. Remem
ber to SAVE your program first. Luckily
the creepage is only small and you have
to type RUN many times before you
exhaust the capacious OL memory.

PROBLEM 7: It is impossible to use
an integer or string variable as the iden
tifier of a FOR loop. Early QLs let you
enter these statements but could not
run them; versions from JM onwards
reject the loop as a ‘bad line’.

CURE: All QL compilers support
integer FOR loops, although you may
have difficulty entering them. Turbo and
Q-Liberator have implicit type directions
so that you can tell the compiler to make
a variable an integer without upsetting
the interpreter by putting a percent sign
after the name. No-one has yet imple
mented string FOR loops.

PROBLEM 8: The integer
operator DIV does not check
cases of binary overflow; it give
ous resufts instead. Try:
PRINT .32 768 DIV-i

I- -

REASON: The QL uses the common
“twos complement” format to encode
signed integers into 16 bits. In this
scheme, the representation of 32768
and —32768 is identical. To avoid
ambiguity, the maximum valid integer is
32767 and the minimum is —32768. DIV
does not check for the case when the
minimum is negated; this should cause
an overflow.

CURE: Avoid extreme values with
MOD and DIV, or use a compiler to
check your code. Turbo and Super
charge diagnose the overflow correctly.
Q-Liberator repeats the division using
floating point maths, postponing diag
nosis until the value is assigned to an
integer variable.

r PROBLEM 9: You cannot use ani
integer or string variable as the identifier
of a SELect statement. Early QLs let you
enter these statements but could not
run them; versions from JS onwards
reject the statement as a ‘bad line’.

CURE: Compile your program with
Turbo on any QLversion, orwith Super
charge on AH or JM versions. Integer
SELect is extremely fast.

PROBLEM 6: A GO SUB in a single-
line FOR loop acts like an END FOR. This
prints all the values of X from zero to ten,
but only displays ‘Counting’ after the
last value:
5 FORx= 1 TO 10: PRINTx: GO SUB 20
10 PRINT “Rn/shed”: STOP
20 PRINT “Counting”: REIum

CURE: Compile the program or use a
multi-line FOR loop, with an explicit END
FOR, instead of the short form. The
problem crops up only if the GO SUB is
on the same line as the FOR. Alterna
tively, replace the GO SUB with a pro
cedure or function call.

p

PROBLEM 5: You cannot de-allocate
ace reserved from SuperBasic with

RESPR. There is no command to do this
,in Basic. The required machine code

routine exists in the ROM — TRAP 1
with DO=15 — but it does not work; it

frmay do nothing, allocate MORE space,
or crash the system.

REASON: Resident procedure space
is intended for device drivers and com
mands which are linked permanently
into SuperBasic. If such code was over
written the machine would crash as

Snc1ah/QL World September 1987 13

The tNT function gives
a ow error if its argument exceeds
‘th wer of 31 minus 2, about 2.14

REASON: The QL floating point
maths scheme uses 31 bits to store the
digits of a value. That allows any number
from about minus 2.14 to plus 2.14 bill
ion to be stored exactly. If a value is out
side this range the computer can store it
only approximately, as the first nine
digits with an exponent to indicate the
position of the decimal point. The
machine cannot be sure of the value of
the last digits. INT fails rather than return
an approximate result.

CURE: Avoid such values, or use a
range check to filter out values which
INT cannot truncate. There is no way to
INT larger values accurately without
increasing the precision of the floating
point format. That would require a major
ROM re-write and make floating point
maths much slower and more cumber
some.

PROBLEM12: You cannot interpret
more than one SuperBasic program at a

—- --

REASON: The SuperBasic task is
handled specially by the ROM — it is the
only task which can grow and shrink
dynamically as it runs. Most of the
interpreter code would multi-task satis
factorily but interpreted programs would
be very slow, because of the need to
move programs around memory as they
collided with one another. Much infor
mation, such as resident procedure
details, would have to be duplicated
between copies. The BREAK
mechanism would also have to be
altered, as at present it will interrupt only
task 0.

CURE: Several firms have advertised
routines to make the interpreter multi-
task; none has reached the market.
SuperBasic compilers wHI translate
programs into standard tasks which can
run within fixed bounds.

REASON: When the interpreter jumps
to a line in a program it has to read and
skip over the start of all the lines in
between. Loops and calls to procedures
and functions work the same way, so
the position of a DEFinition in a program
can make a big difference to the speed
with which it is found. Other Basic inter
preters look up variable names in a simi
lar way but the QL stores them by index,
so it does not slow as the number of
names in your program increases.

CURE: Compile the program. That
fixes the address of each line or routine
so that it can be found instantly wher
ever it may be in the program.

VOBLEM 15: SuperBasic locks-up if
you type CLEAR or edit a line after trying
to call a procedure or function which
was defined at the end of the program
but deleted later. This happens only if
there is no line left with a number beyond
that of the DEF of the deleted routine.

- -

__

REASON: The interpreter gets stuck
in a loop if it is asked to clear details of a
PROC/EN call which does not make
sense.

CURE: Do not do it, or keep a STOP
or REM on line 32767 at the end of your
program.

stop without a message. For example,
this READ will not change the value of
A$:
20A$=”QL USER!”
30 READ A$(4 TO)
50 DATA “WORLD”

PROBLEM 17: If an END is missing
from a program, interpretation may stop
with no indication of the problem or its
location. Spunous ENDs are ignored,
with no message.

REASON: When the interpreter needs
to find an END — after a conditional
clause, or an EXIT, for instance — it
searches forward through the program
until it finds the required statement,
advanQing the ‘continuation line’ indi
cator as it does so. If the END is never
found the program stops, with no record
of where it ‘came from’.

CURE: Use a compiler or style
checker, such as Better Basic, to make
sure that starts and ends are matched
properly. Under such circumstances the
Turbo Toolkit routines TRACE and HOW
COME help you to determine where a
program failed.

PROBLEM 18: Memory remains allo-.
cated every time you jump out of a pro-
cedure or function without performing a
proper RETurn or reaching END DEFine.
The space is recovered

CURE: Do not do it. Inawell-designed
program, every routine should have a
single entry and exit point. Avoid GO
TOs and arbitrary use of REPeat and
END REPeat to perform jumps, e.g.:
REMark Ve,y bad style
REPeat loop

FRED
DEFine PROCedure FRED

END REPeat loop
END DEFine

This will work but it is horrendous style
and will consume memory at a rate of
about 1 K per second.

PROBLEM 19: Very large numbers
take a long time to be converted for
PRINTing. Try this:
FOR 1=1 TO 10:PRINT 123456E610 A

-r

- -,-.- — —.--

PROBLEM 13: Contrary to Sinclair CURE: Either dimension the string:
claims, the . speed of SuperBasic 10 DIM A$(8)
interpretation dedilnes steadily as prog- or read the value and assign it to the
ram size increases. A jump to the end of slice in two steps:

—. a large program on a standard QL can 30 READ T$
take 100 times as long as a jump to a 40 A$(4 TO)=T$
routine at the start.

PROBLEM 14: If you type EDIT after

PROBLEM 11: You cannot breaking into a procedure o’r function,]

IintcFlsingle-Iine recursive procedure. SuperBasic can present you with a ‘not]
— . implemented’ error the wrong line.

REASON: Sinclair did not put a check L.

for BREAK in the procedure-call code. CURE: Press BREAK and type the

This oversight saves time and is unlikely EDIT command again. Do not be temp

to cause problems. ted to edit the line you are given, or you

CURE: Split the procedure over could corrupt the whole program.

several program lines.

I!II j

5: If you try to READ or
into a slice of a string
been dimensioned, the
? stored and Basic may

Sinclair/QL World September 1987

metrcirou LII rate to
thaninineldi It buTonly a maximum
seveh’digit displayed.

CURE: Compile the program with
Turbo or Supercharge, both of which
show all nine digits and correct small
errors in ROM floating point routines.

ROBLEM 21: You can use only one
short-form FOR or REPeat statement on

uperBasic line. If you put more than
only the last one will work.

CURE: Add END FORs and END
REPeats to convert the loops into long
forms.

Input/output bugs

PROBLEM 22: FILL sometimes col
ours the same line twice. This causes
problems only if you are using OVER -1,
as the effect is to reverse the effect of the
FILL on that line.

CURE: Start drawing the pattern from
a point at the top or the bottom.

PROBLEM 23: If you MERGE a file of
d1rectcommands_only the first line will.
b readlancjthjtj’e will not be closed.

atImakeit impossible to use another
apeI5ldisi thatidrive later. 4

CURE: Put the Supercharge/Turbo
Toolkit command END CMD at the end
of the command-file line. That closes the
file.

PROBLE 4: The ach ma
cras i ‘yn rror — line p

n wttou numberr ea fro

CURE: Do not do it. Check your com
mand file by putting a number at the
start of each line and LOADing it; poten
tial ‘bad lines’ will be marked with
‘MISTake’.

PROBLEM 25: Reports may be lost or
the SuperBasic interpreter may be

hboDked out if the standard Super-Basic

SInclairIQL World September 1987

REASON: When you CLOSE a file,
Qdos prepares to replace all the parts
which have been changed. They are
copied from temporary storage in mem
ory ‘slave blocks’ into the correct place
in the file. In the interests of speed,
LBYTES suspends this copying and
loads the file directly from the drive,
without checking to see whether or not
some blocks have changed recently but
have not yet been written back to the
medium.

CURE: Wait for the drive to stop after
CLOSE before using LBYTES, or use
the Super Toolkit FLUSH command.

REASON: The handler does not
check whether or not a drive is write-
protected when a file is opened or data
is written. Luckily for the existing data,
the low-level routines detect that the
tape is protected and do not allow writ
ing. The control software assumes a
‘bad medium’ when several attempts to
write have failed.

CURE: Beware, and do not assume
disaster if you get a ‘bad medium’ report
on one of your master tapes. Machine
code programmmers can tell whether or
not the currently-turning tape is write-
protected with IPC call 1 but this does
not tell you which drive is turning. To find
that, enter supervisor mode to prevent
asynchronous changes and read the
drive number byte at 164078 before
interrogating the IPC. A proper fix
should be buried deep in the code of the
device driver.

PROBLEM 28 If you set a position for;
binary random access far beyond the
capacity of a cartridge you may get a
misleading ‘bad or changed medium’
message, hstead of ‘out of range’.

REASON: The Microdrive handler
i uses 24-bit addresses internally, limiting

WOBLEM 29: You cannot draw a
block of width 512. Nothing hap
you try it.

CURE: Use CLS or two horizontally-
adjacent BLOCKs.

PROBLEM 30: The priority of
Basic, task 0, may be set to zer re
venting further command entry.

CURE: Use Turbo Toolkit or Super
charge extensions which check for this
case and exclude it.

REASON: These keys trigger a level 7
interrupt, which is intended to call-up a
hardware debugger which Sinclair staff
used while testing development sys
tems. The facility is still there in produc
tion machines, even though the external
debugger is not. The interrupt re-sets
the 8049 second processor but npt the
main 68008. If the interrupt occurs while
these two chips are communicating, as
is highly likely, the 8049 ‘loses its place’
and crashes, preventing keyboard
input.

CURE: In general, do not do it. The
keys have been chosen to make acci
dental entry very unlikely. The system
call MT.TRAPV (TRAP 1, DO=7) lets you
specify a routine to be executed when
hardware errors cii interrupts occur.
Unfortunately this is of limited use, as the
keyboard and RS232 die when the 8049
re-sets.

You should not treat this list as an
indictment of the QL. Every computer
system, of whatever vintage, contains
bugs and the QL is no worse in this
respect than other ambitious designs.
At least, and at last, you are forewarned
by this list. Each version of the QL ROM
has its own bugs, besides those listed.
Read the article entitled Version
Therapy, in last month’s QL World, to
find more about specific ROM faults.

15

Beating.

the bugs
CO N T I N U E D

REASON: The binary to text value 1 2 aré’ the length of a file to about 16.7 million
conversion routine works by multiplying bytes. Larger values corrupt other infor
or dividing by 10 repeatedly until it has a CURE: Do not do it — Psion take mation packed into a 32-bit register with
nine-digit integer to deal with. This is fast note. the address.

extreme ones. LBYTES after ed andIsavinithere sage — your tape is intact. Then lower
CURE: Wait. is a risk that th eloadedIwinot your sights; 16 MB Microdrives are

for common values but very slow for r PROBLEM 26ouIIoad!9fiIwith CURE: Do not be misled by the mes

include all the ch voulmadE some way off yet.PHQBLE1v12OheQL internal ant

PROBLEM 31 Pressing the cornbi..;
PROBLEM 27: The Micrcidrivë hand- nation of keys CTRL, ALT and 7 — or 2

ler gives a delayed and misleading ‘bad . or 5 on some machines — usuaily
or chan ed medium’ messa e if t causes the QL to crash at once.

something on a táce whicM

Return of the
ROMs
I revealed the

results of three years’
research into the idio
syncracies of the QL
built-in software — the
operating system Qdos

and the SuperBasic interpreter — I
found and explained 77 bugs in the QL
ROM.

Since then, with the help of QL
World readers, I have identified
another 11 problems, so now is the time
for an update.

This is more than just a list of faults;
it explains how to circumvent them.
All complex systems contain bugs,
though hardware manufacturers
curiously are shy about admitting
them and sorting them out. Bugs are
rarely a problem if you know about
them and how to avoid them. All most.
users want to know is how to get the
result they need without getting into
difficulty.

There is no sure defmition of a bug.
One person’s bug is usually someone
else’s feature. I have included quirks of
the QL ROM which cause apparently
correct programs to give unexpected
results, or no results at all, plus a few
undocumented features. The list deals
only with idiosyncracies inside the QL
ROM — the SuperBasic language and
the associated collection of operating
routines called Qdos.

Some of the bugs may cause other
programs to fail, so I have included
technical information to help software
developers guard against the most
common problems by defensive pro
gramming in their own code. The bugs
are in two groups — problems which
afflict all QLs, followed by a list of
faults specific to certain ROM ver
sions.

‘New’ bugs
in QLs everywhere

Integer input
Dilwyn Jones ieports a sometimes

annoying bug in all QL ROMs. Integers

— whole number values stored in
variables with a percent sign at the end
of their names — can have values
between -32768 and 32767. The state
ment X% = -32768 works satisfactorily
but X% = -32769 gives an error as you
might expect.

You cannot INPUT a value of -32768,

If you try to do so you get an ‘error in
expression’ report because the QL
works out the value of the digits before
its sorts out the sign, plus or minus,
and + 32768 is not a valid integer. Qdos
uses the same code to convert values
from all devices, so the bug is present
whether your INPUT is from the key-

SInclalzIQL Wand June 1988

board or a file.
It is really just sloppy coding on the

part of the ROM authors who seem to
have difficulty with the value -32768. I
pointed out previously the weird
results you can get using that value
with the integer DW and MOD opera
tors.

You can define the position of any
window on the screen in terms of co
ordinates in picture elements or pixels.
The co-ordinate scheme assumes that
there are 512 pixels across the screen
and 256 downwards. Window widths
and horizontal co-ordinates are always
rounded to an even value. This means
you cannot put a one-pixel gap between
two windows in MODE 4, the highest
resolution QL display mode. The
minimum gap is two pixels.

You cannot deal with this by setting
a BORDER width of one in the window,
as horizontal border widths are also
rounded up, so that BORDER 1,7 gives
a white border one pixel wide in the
horizontal lines but two pixels wide
vertically. You can easily see this if
you use a stippled border pattern:

MODE 4: BORDER 1,7,0

This bug is not properly-documented
but understandable when you think
about the QL display design. The
restriction exists because QL windows
are designed to be able to cope with a
change of MODE at any time. One
mode allows four colours, with 512 dots
across the screen, while the other
allows eight colours with 256 dots on
each line. A gap of one pixel in MODE 4
would become a problematic gap of
half a pixel as soon as MODE 8 was
selected.

Merge bugs
The MERGE and MRUN commands

become confused if you use them
inside a SuperBasic procedure or
function because the act of merging
new program lines invalidates stored
information about where in the pro
gram execution should continue.

SuperToolkit 2 re-defines those
commands to detect attempts to use
MERGE inside a DEFinition. It stops
the program with a ‘not implemented’
report if it runs into trouble.

Cotangent error
Dr. Helmut Aigner of Austria dis

covered that the Co-Tangent function,
COT, gives a result of 1 when asked to
fmd the co-tangent of zero, whereas
COT(0) is undefmed and should really
give an ‘overflow error.’

The error is in the Qdos maths
package, rather than in SuperBasic, so
it affects other languages. In general, if
a language uses the Basic 7-9 digit

precision, it is likely it will inherit this
bug. It is easy enough to check for the
special case of zero explicitly in pro
grams which use co-tangents.

Startup keys
According to published documenta

tion about Qdos it should be possible to
tell whether the user started the QL by
pressing Fl or F2 by reading the value
in address 163890, known as
SV.TVMOD. This information would
be very useful when programs start as
they could work out whether or not the
user had a monitor and set windows to
suit automatically.

When the QL starts PEEK(163890) is
0 for a monitor display (Fl) and 1 or 2
for a TV display (F20); 1 indicates a
European TV, capable of displaying 256
horizontal lines of pixels, and 2 means
that a 525-line American display was
selected, with 192 lines of pixels and
characters eight rather than 10 pixels
high.

Unfortunately the MODE command,
used to switch between four- and eight-
colour displays, has a bug which
means that the value of SV.TVMOD,
the F1/F2 flag, is affected as soon as
you issue your first MODE conunand.
The result is that programs have to
deduce whether you are using a TV or
a monitor indirectly by checking the
screen mode — four or eight colours —

rather than the initial selection you
made after turning on the machine.
This is a fault because it does not
necessarily follow that you are using a
monitor because you are in MODE 4
before you start using Quill. Nor does
it follow that you have a TV because
you load a Psion program from MODE
8.

Current versions of the Psion pack
age no longer check SV.TVMOD
because of the bug. You can circum
vent the fault when using programs
which test SV.TVMOD by POKEing
the required value back into 163890 but
this will not help if your program
loader issues a MODE command before
it tests for TV or monitor selection.

This bug can be cured by re-writing
the MODE command to set register D2
to -1 — meaning no change — before
calling the operating system. Anyone
who owns a copy of Speedscreen will
fmd that it fixes this bug automatically
by replacing the standard MODE
routine with an enhanced and cor
rected version. If you want to use it to
keep the original F1/F2 value you
should load Speedscreen at the
start of a session before
the first MODE command.

31

2.c iJ I Simon Goodwin follows up last year’s
look at the QL built-in ROM software
with 11 new bugs and more about the QL

Window rules

SlnclairIQL World June 1988

CLS
By far the most interesting QL bug

Occurs in the CLS command. All
known ROM versions accept
undocumented CLS parameters and do
unexpected things as a result. The CLS
command allows a single optional
numeric parameter. Officially it is a
value between 0 and 4, referring to
different sections of the display as
documented in the QL User Guide.

Non-standard values cause calls to
other display device routines, using
whatever parameters happen to be in
registers when the call takes place.
Some of those routines are not
normally accessible from standard
SuperBasic. The property appears to
be an accident, although it can be
useful in practice.

The internal routines to clear
different areas of the screen form a
sequence of distinct system-calls —

SD.CLEAR, SD.CLRTP,
SD.CLRBT, SD.CLRLN and
SD.CLRRT, using system
call numbers 32 to 36
inclusive. CLS converts
parameters between 0 and 4
into a call number of 32 to
36. So choose the appro
priate ROM routine.

Other system call
numbers correspond to
different display operations
and the code for CLS allows
parameters outside the
documented range of 0 to 4.

Parameters between 5
and 7 give a ‘bad parameter’
report but CLS changes the
current STRIP colour, the
background colour used
when printing characters.
CLS 8 works like STRIP 0!
You can put a channel
number before the para
meter to select the window
affected by the command
CLS#0,8.

CLS 9 works like INK 0,
which is particularly
interesting when you
realise that the system call to set the
strip colour is number 40 and the call
to set the ink is number 41. The
sequence continues through the TRAP
#3 display routine, so CLS 10 sets
FLASH 1, CLS 11 sets UNDER 1 and
CLS 12 selects OVER 0.

Values between 13 and 15 give a ‘bad
parameter’ again, as do all parameters
which give results between 5 and 7 if
you make them MOD 8 but then things
become really interesting. CLS 16 plots
a point at graphics co-ordinate 0,0. The
next thi’ee have no obvious effect but
CLS 17 draws a zero-length line, while
18 and 19 draw zero length arcs and
ellipses.

CLS 20 calls SD.SCALE, system call
52, and has the rather annoying effect

32

of setting an enormous graphics scale
so that lines, arcs and ellipses all
appear in the bottom left pixel of the
window. Use SCALE 100,0,0 to set
things to rights.

Parameters from 21 to 95 give ‘bad
parameter’. CLS 96 appears to do
nothing but in fact it checks the
channel for pending input, using
system call zero. The parameter values
have ‘wrapped around’ internally to
start again at the lowest call numbers.
CLS 97 waits for one character before
returning. CLS 98 uses the INPUT
routine 10.FLINE to read the character
codes between 32 and 191. Characters
are displayed but not returned and the
buffer size is just 3.

CLS 99 calls 10.FSTRG; it fetches a
line of up to three characters of any
code without displaying them. ALT
keystrokes count as two characters.
CLS 100 calls 10.EDLIN, the Basic line
editor. A long strip of gibberish

appears; you can edit the text but any
attempt to insert characters after the
second gives a ‘buffer full’ error.

CLS 101 to 104 give ‘bad parameter’
again. You should not enter CLS 105 as
it locks up the machine; it corresponds
to SD.EXTOP, the extended operation
call, and in this case it hands over
control to a non-existent routine.

CLS 106 and 107 have no obvious
effect but they read the window size in
pixels and characters. You get a three-
pixel-wide, horizontally-striped border
with CLS 108.

CLS 109 to 111 give ‘bad parameter’,
unfortunately, so you cannot access
the routines to turn the cursor on and
off. CLS 112 and 113 call the POS and
TAB routines, in both cases causing an

‘out of range’ report. CLS 114 moves to
the next line unless the window could
need to scroll in which case it gives an
‘out of range’ error. This call, to
SD.NL, could be useful in screen-
handling programs if you have some’
way to trap the error it prevents
having to keep checking the current
line when moving. CLS 115 moves the
cursor left, giving ‘out of range’ after’
the left most column of the window,
and CLS 116 moves the cursor right.

CLS 117, 118 and 119 give ‘bad
parameter’ but CLS 120 scrolls down
the window by 10 lines; 121 and 122
scroll each side of the window, while
CLS 123 pans the window right.
Parameters from 124 to 127 are rejected
and at CLS 128 we are back to the same
effect as CLS 0. The parameter values
cycle round in a 128-step sequence.

Special bugs
The remaining bugs af

fect only the specific ver
sions of the QL noted. The
August 1987 edition of QL
World explained how you
can upgrade the ROMs in
your QL. You can obtain
most QL ROM versions
from Adman Services at 53
Gilpin Road, Admaston,
Telford TF 5 OBG.

I said initially that JM
and later versions were
made using mass-produced
‘mask-programmed’ ROM
chips, whereas the AH and
earlier versions used
individually-programmed
EPROMs. The upgrade
procedure from EPROM to
ROM is significantly more
complicated than from one
ROM to another, when you
can just swap the chips in
their sockets.

Since then I have heard
from D. A. Masters, who
bought a JM QL with

EPROM5 in it. It appears that the first
100 or so JM QLs were made with
EPROMs rather than ROMs because
the JM software was ready but had not
arrived from the manufacturing sub
contractor. The upgrade procedure
from JM EPROMs is the same as that
for All chips.

Second processor
I have found a cure for the CTRL

ALT.7 bug, documented last year. Most
QLs lock up i f you type those charac
ters because the software in the second
processor, separate from the main
ROM, treats that keypress as a request
to call up external hardware which
only Sinclair owned.

Sinclai4QL World June 1988

“There is no sure
definition of a
bug. One
person’s1
bug is
often
somebody
else’s
feature.”

i

Add-on keyboard manufacturer
Schoen recently produced a replace
ment second processor to cure key-
bounce problems for people using its
keyboard and this upgrade also pre
vents CTRL-ALT-7 interrupting the
machine. Unfortunately the Sinclair
key-bounce fix, the version 1.2 chip
from Applied Technology, does not
correct the CTRL-ALT-7 bug.

Editing cursor
The first two workable QL versions,

AH and JM, have a bug in 1O.FLINE
and 1O.EDLIN, routines used by INPUT
and EDIT. If the data entered becomes
too large for the available storage buf
fer the routine gives an error message
but leaves the cursor turned on in the
input window.

This does not cause problems in the
JM ROM versions of those com
mands because the ROM
code turns off the
cursor after an error to be
on the safe side. It can cause
problems if you write your
own machine code pro
grams and call 10.EDLIN or
1O.FLINE.

You can prove that the
error exists by typing CLS
98 to call 10.FLINE directly,
then typing three charac
ters to fill the buffer. An
error is reported and the
command cursor appears at
the bottom of the screen but
the cursor at the top of the
screen is still flashing. Type
CTRL C to get back to the
command line, then enter
INPUT X$. Finally, press
ENTER and let INPUT turn
off the stray cursor.

The DIY Toolkit function
EDLINE$ and the Turbo
Toolkit EDIT%, EDIT$,
EDITF functions all contain
code to turn off the cursor
explicity so they are not affected by the
bug.

Bad names
The AH and JM versions of QL

SuperBasic have the annoying bug
that they will not let you re-define
names which have caused the com
puter to give a BAD NAME report. You
might become irritated by the standard
QL display speed and type: -SPEED 2 to
turn on Speedscreen, only to find that
it was not loaded. The system reports a
BAD NAME error — unless you have
the RUM version—because it does not
recognise the command. After that
normally you would use RESPR to
reserve some space for the code, load it

with LBYTES and call the start
address.

In this case you are usually safe,
because Speedscreen turns itself on
automatically when you load it but the
-SPEED command is still considered a
‘bad name’ by an old QL system. So you
cannot check the Speedscreen version
with -SPEED 1, because -SPEED is still
defined as a Basic ‘bad name’ rather
than the name of an extension com
mand.

The same confusion occurs if you try
to use any other Toolkit commands
before loading them. If you try to use
them before they are loaded you con
fuse the system. Such commands work
properly after you type NEW, because
that clears out all prior SuperBasic
definitions, leaving only the resident
commands and functions. Unfortu
nately this also gets rid of your pro
gram and all the variable values.

If you try to run a program compiled

with version 2 of Turbo on a system
where commands are multiply-defmed
the compiled code produces a message
and a list of re-defined names it needs
to use. Type NEW and try again.

CLEAR is not sufficient to persuade
SuperBasic to release unset names.
The interpreter tends to grab memory
whenever possible and release it only
under extreme circumstances. Resi
dent command definitions over-rule
SuperBasic ones in JS and MG ver
sions of the QL, so this bug does not
affect later ROMs.

No cursor
Another annoying quirk of the AH

and JM RUMs is the way the cursor
vanishes after you have finished using
a task. Nothing appears on the screen
until you type CTRL C to switch to
another window.

Later QL RUMs turn on the cursoi
automatically in the ‘next’ task
window — usually the SuperBasic
window zero at the bottom of the
screen — when the task which was
previous accepting input terminates.

Translation

The JS version of the QL introduced
a new command, TRA, which trans
lates or exchanges the codes of
characters transmitted through the
serial ports automatically. The bad
news, according to top Danish software
house Dansoft, is that TRA translates
values only after it has adjusted the

parity of characters, so that
character codes greater
than 127 may not be trans
lated.

JS ROM key
The JS RUM has another

exceptional bug in its
handling of the CAPS
LOCK key. if you press
CTRL and ESC at the same
time on most QL5 you get
character code 128. ESC is
not a letter of the alphabet
so you would not expect
pressing CAPS LUCK to
have any effect on the code
you get.

A sloppy comparison
statement in the JS RUM
means that CTRL ESC gives
a code 160 if CAP LUCKS is
in effect and code 128, as
expected, otherwise. This is
a very esoteric bug but it is
worth noting if you are
writing a program and
planned to use CTRL

ESC as a control keystroke. Code 160
normally is obtained by pressing CTRL
SHIFT “2”.

“Toolkit commands work
after you type
NEW...
this also
gets
rid
of
your
program
and all the
variable
values.”

• Simon Goodwin revealed 46 other
bugs specific to particular QL ROM
versions in the August, 1987 issue of
QL World and listed 31 bugs in all QL
ROM versions in the September issue.
This list brings to 88 the number of
published ROM bugs. Doubtless there
are more, although we must have
tracked most of the important ones by
now. Ifyou have found others, please
let us know.

SinclairIQL World June 1988 33

BUGS AT LARGE

I Tame hacker Simon Goodwin tracks another batch of bugs
which afflict all QL systems, plus secret priority levels, and
undocumented commands which let you use cursor-control
and random access files on any unexpanded QL

I
n three previous articles I have
revealed the results of four years’
research into the idiosyncracies of
the QL built-in software, the Qdos

operating system and the SuperBasic
interpreter. To date I have found and
explained 88 bugs in the QL system.

This is an update to my original articles,
which were published in the August and
September, 1987 and June, 1988 issues.
Since then I have found 14 new bugs,
bringing the total to 102. I have also found
more about the Microdrive write-
protection fault mentioned in September,
1987.

There is no sure definition of a bug. I
have concentrated on quirks of the QL
system software which cause apparently
correct programs to give unexpected
results, or no results at all. In some cases
programs which should not work are
prone to do bizarre things. I count these as
bugs, although arguably they are
undocumented features. Some of them
are even useful.

All complex systems contain bugs.
Hardware manufacturers are curiously
shy about admitting them, apparently on
the basis that what you do not know will
not hurt you. This encourages naive users
to place unreasonable reliance on
inherently fallible systems. In fact, bugs
are rarely a problem if you are
forewarned. All most users want to know
is how to get the result they need without
getting into trouble.

Some system bugs may cause other
programs to fail, so I have included
technical information to help software
developers guard against the most
common problems by defensive
programming in their own code. Where
relevant, I have discussed the implications
of the bugs for people intending to
compile their programs.

This list deals with idiosyncracies inside
the QL. Most of these concern the
SuperBasic language or the associated
collection of routines called Qdos. Some
of the most obscure bugs occur in the
second processor software which is
programmed on to the 8049 IPC chip
rather than the main system ROMs.

All QL programmers write new and
original bugs as a matter of course but they
are outside the scope of this article. So far
as I can tell, all the new bugs occur on
every version of the OL. The last five are
concerned with the pair of linked QL

processors. All the others stem from
mistakes in the 48K QL system ROM.

(* Bug 89 — RENUM *)

When you RENUMber a program the
QL automatically adjusts references to
line-numbers after RESTORE, GO TO
and GO SUB commands. Unfortunately
it does not alter the parameters of resident
procedures which refer to line numbers;
they include commands like RUN,
SAVE, LIST and EDIT.

If you need to re-number a program
with RUN in it, use GO TO [line] instead
of RUN [line]. If you write programs
which LIST or SAVE parts of themselves,
you can not re-number them
automatically. You must fix the LIST or
SAVE statements. Unfortunately that is
just the kind of program it is useful to be
able to re-number.

(* Bug 90— NETWORKING *)

The OL is incapable of writing an empty
‘packet’ of data over the network. If you
try to make it do this, the whole machine
locks up. It is easier to run into this bug
than you might expect. imagine you have
opened a network file in the usual way,
with:

OPEN #3, NETO-1
Then you realise you do not want to

write anything to the file, or have nothing
to write yet. Being tidy-minded, you type:

CLOSE #3

At that point the QL freezes, trying to
write a zero-length block. The same thing
can happen if you supply the device name
NETO-1 to a program which tries to write
an empty file.

This bug was found by David Oliver of
CST. His fix is not very elegant; the Thor
XVI locks up for 30 seconds if you try to
write a zero-length block, then normal
service resumes, accompanied by an
‘Xmit Error’ report.

(*Bug 91 — TOP PRIORITIES *)

According to all the published
documentation, QL task priorities are
numbers between 0 and 127. The higher
the priority of a task, compared to that of
other tasks running at the time, the larger

the share of available processing power
used to run that particular task. It
transpires that priorities greater than 127
are allowed. The system call MT.PRIOR
(TRAP #1, DO=11) accepts higher
priority values, in the range 128-255.

Most people set priorities with toolkit
commands like the Turbo Toolkit SET
PRIORITY or Tony Tebby’s SPJOB.
SET-PRIORITY follows the book and
rejects priorities greater than 127 but
SPJOB passes the low byte of any integer
value to MT.PRIOR. Thus you can use
values above 127.

Negative values work, too. SPJOB 0,0,..
I sets the priority of SuperBasic (task 0,0)
to 255 in the JOBS list. Other negative
values —2 to —256 correspond to priorities
from 254 down to zero.

LIST TASKS in Turbo Toolkit shows
non-standard priorities as negative values,
whereas the SuperToolkit JOBS
command shows them as positive. I tested
the new priorities by running three
compiled SuperBasic integer print loops
at the same time. One ran at a priority of
255 and the others at the default priority,
32. The high-priority task received about
five times as much processing time as each
of the other two. This matches the results
for similar ratios of conventional
priorities, like 8, 8 and 63, so it seems that
the non-standard values work as an
extension of the normal range.

(Bug 92 — MICRODRIVE
FORMATI’ING *)

Microdrive formatting fails at once with
an ‘in use’ error if any Microdrive is
running when you issue the FORMAT
command. This can stop SuperBasic
unexpectedly if you write to one drive and
FORMAT another soon after, while the
computer is still verifying files which have
just been written.

You also run into trouble if you try to
add files to a cartridge and fill it. You
cannot re-format the tape to get some
more space until the system has finished
checking the data it managed to write,
even though you have indicated that you
want to wipe the cartridge.

To avoid the ‘in use’ report, check the
system variable SV.MDRUN before
issuing a format command. PEEK
(164078) gives you the number of the
currently-running Microdrive, or zero if
no drive is in use. The procedure SAFE-

18 Sinclalr/QL World February 1989

FORMAT, in listing one, will format any
device, checking SV.MDRUN if
necessary.

(* Bug 93 — SCROLL quirks *)

Explained how the CLS command
could recognise undocumented parameter
values. Non-standard parameters are
accepted and give results which seem
bizarre at first but correspond to internal
QL system calls.

The SCROLL keyword has a similar
but superior feature. SCROLL does much
the same thing as CLS but expects a
second parameter eight greater than the
CLS equivalent. For instance, SCROLL
0,24 has the same effect as CLS 16 which,
in turn, works like the documented
command POINT 0,0. All three call the
system routine SD.POINT.

SCROLL is more useful than CLS
because it accepts an extra parameter —

the number of pixels to be scrolled. This is
passed to Qdos in register Dl. Several
other calls expect parameters in Dl, so we
can use SCROLL as an alternative way to
pass values to the system. For instance,
try:

FOR X=0 TO 255,7 : SCROLL X,17:
PRINT “Hello”;

In this case the SCROLL command
passes the value of X to SD.SETIN, with

FS.POSRE are recognised by every QL
and let machine-coders move the file
pointer to any ABsolute or RElative
position. There are apparently no
SuperBasic commands to move the file
pointer; you appear to need a Toolkit
command like SET-POSITION.

This is a problem if you want other
people to use your SuperBasic. You
cannot rely on other users owning a
particular toolkit. All toolkits soak some
RAM and that is particularly precious on
an unexpanded QL.

Packing

Hackers may be amazed to learn that
many OL users are still struggling in 128K
and they are in particular need of
improved file-handling. Would it not be
pleasant if we could find a way to use
random access, on any QL, without a
Toolkit?

It transpires that SCROLL can do the
job. SCROLL #3,N% ,42 allows random
access to a file open on channel 3 — on
disc, RAM-disc, Winchester or
Microdrive. This calls FS.POSAB, setting
the file pointer to the value of N%.
SCROLL #3,0,42 re-winds to the start of
the file, SCROLL #3,1,42 points after the
first character, and so on. Listing two
illustrates a simple random access
program. It was tested on a IS QL but

The final loop lets you select any record
by number, using random access to find,
read and print the appropriate line from
the file. Type 10 to stop the program.

It is feasible to use SCROLL to position
the pointer and PRINT new data into the
middle of a Me. The characters printed
over-write the old ones at that position, so
it is a good idea to use fixed-length
records. The file is extended if you print at
the end but you cannot insert characters in
the middle of a file without over-writing
what was there previously.

Unfortunately, SCROLL expects
integer parameters, so you cannot use
SCROLL 42 to move more than 32 down a
file. SCROLL #3,n,43 might cure this by
allowing relative moves with FS.POSRE.
In practice it is rejected by the poor
checking in the SCROLL keyword code
and gives a ‘bad parameter’ error.

(* Bug 94 — PAN possibilities *)

Once I had investigated the SCROLL
and CLS bugs it seemed worth checking
PAN in case it allowed access to other
system calls. PAN uses the same
technique to convert its parameter into a
Qdos trapkey but it adds 27 to the
parameter value. PAN #c% ,0,124 has the
same effect as AT #c%,0,0.

All these keywords are meant to handle
parameter values between 0 and 4, so they
use shared code which checks the value

results which are interesting but not
particularly useful. We can do better.

(* SECRET RANDOM ACCESS *)

Microdrives and discs allow random
access to file data. You can wind back and
forth through a file, re-reading or re
writing information, with no need to
CLOSE and RE-OPEN the file every time
you want to move backwards and no need
to read intervening information as you
move round a file.

This is very useful if you are writing a
data-handling program, as it means you
can extract data from anywhere in a file
without the system having to fetch
irrelevant data.

The TRAP #3 keys FS.POSAB and

should work on other models. The first
line opens a file and the second fills it with
10 sample lines of data, each seven charac
ters long including the ‘enter’ code at the
end of each line. Then a SCROLL com
mand re-winds the pointer to the start of
the file without closing it.

Loops

A REPeat loop is used to read and
display each line until the end of the file is
reached. The EOF function works well
with random access files; you get an ‘end
of file’ error, as you might expect, if you
try to set the file pointer to a number
greater than the total length of the file.

and rejects it if it gives more than 4 when
taken modulo 8. SCROLL and CLS add
32 and 40, so they both reject the same
values, but PAN adds 27, allowing access
to different system routines.

PAN lets you turn cursors on and off
without a Toolkit. PAN 0,115 turns the
cursor on in the default channel, while
PAN 0,116 turns it off again. These
instructions are vital when writing
compiled multi-tasking programs which
use INKEY$ or PAUSE; if a task does not
display a cursor it cannot be selected for
input with Control C.

To make PAUSE and INKEY$ work
correctly, put PAN #0,0,115 at the start of
a task. Note that the default channel for
PAUSE and INKEY$ is #0; Sinclair did
not reveal this.

Listing 1 - Safe miorodrive formatting.

DEFine PROCedure SAFE-FORMAT(device$)
IF LENdevioe$) > 4

IF device$(1 TO 3)=mdv
REPeat poll: IF PEEK(164078)0 THEN EXIT poll

END IF
END IF
FORMAT device$
END DEFine SAFE-FORMAT

Sinclair/QL World February 1989 19

Like SCROLL, PAN passes an extra
parameter to Qdos in register Dl. We can
use this to call FS.POSRE, passing a
relative offset for the file pointer. You can
access any part of a long file by using
SCROLL 42 to get to a known place, then
PAN 40 to move fowards or backwards
from there. PAN #,N%,40 passes the
integer N% to FS.POSRE. N% is the
offset from the current position in the file,
so:

SCROLL #3,30000,42: PAN #3,
20000,40

positions the file pointer after the 50,000th
byte in a file. Use PAN 40 repeatedly if
you need to wind more than 64K down the
file.

It would be pleasant to be able to
‘truncate’ a file, discarding characters
after a certain point so that space could be
re-used. You may find that PAN #3,0,48
will truncate the file on channel #3 after
the current position but this relies on the
undocumented system — call FS.
TRUNC, TRAP #3, DO=75.

Unfortunately, FS.TRUNC was a real
afterthought rather than something which
was not documented. Standard QLs do
not recognise FS.TRUNC; you need the
Sinclair QL Toolkit, SuperToolkit 2 or a
disc expansion to make this call work.
They include an extra command
TRUNCATE, so there is not much point
using the PAN version unless you want to
be deliberately obscure.

(5 Bug 95 WINDOW parameters 5)

WINDOW does not check the number
of parameters you pass to it. Quanta
members who discovered this bug hoped
that the ‘undocumented’ parameters
would allow extra control over windows
but this is not the case. The WINDOW
code uses only its last four parameters,
plus the first one the optional channel
number — if the parameter list starts with
a hash. The other values are ignored.

If you put extra parameters accidentally
in a WINDOW command it can be
difficult to determine what has gone
wrong, unless you know about this minor
bug. The keyword code could be fixed by
adding a check on the value in D3 after
calling the parameter-fetching sub
routine.

(S Bug 96 — DUNE channel 5)

DUNE allows an optional,
undocumented channel parameter. If you
put a hash and a channel number between
the command and line details you can re
direct the ‘automatic listing’ which
normally appears in channel 2 when the
program is changed. It is difficult to
imagine how this could be useful.

(5 Bug 97— CHARACTER CODES 5)

The CHR$ function is meant to convert

a number between 0 and 255 into a
character with the corresponding code. In
fact, it accepts any integer value from
—32768 to 32767 as a valid parameter. The.
resultant character depends on the value
of the bottom eight bits of the integer.

This bug is unlikely to cause problems
as it does not affect correct programs; it
means that some technically-incorrect
programs produce useful results. For
instance, consider listing three, a useful
snippet of code which compresses an
integer value, X%, into a two-character
string.

This is useful when packing numbers
into fixed-length records in a file. If you
did not compress the value and PRINTed
it normally, it would occupy between two
and seven characters, depending on the
value. The packed representation uses a
fixed length of two bytes for every value,
saving space in most cases and making it
easy to skip over values.

Note that the code must handle
negative values of X% separately and the
second character code must be reduced
modulo 256, to ensure that the parameter
value never strays from the range 0 to 255.
You can manage with faster and simpler
code, like this:

RETurn CHR$ (X% DIV 256) &
CHR$(X%)

The first CHR$ expression takes
negative values in its stride, because of the
bug. The second part does not need the
MOD because CHR$ ignores the top
eight bits of its parameter.

The TURBO SuperBasic compiler has
its own fast code for CHR$, to avoid the
need to call the Sinclair slow resident
function. This bug is duplicated
deliberately in compiled code to preserve
compatibility. The parameter of CHR$ is

always an integer, so the code is not
slowed by the need to handle the bug
correctly.

Q-Liberator does not generate its own
code if it can use an existing resident
routine. In this case it is exactly
compatible with the interpreter, because
it calls the interpreter routines for every
resident command or function it executes.

(5 Bug 98— POKE PARAMETERS 5)

The POKE and POKE-W commands
have a similar bug to CHR$; again this
quirk can sometimes be useful. To be
compatible with the ZX Spectrum, the
POKE and POKE-W commands let you
store signed values as well as unsigned
ones. For instance, you can POKE X,-1 or
POKE-2 X,65530 even though strictly the
parameters of POKE should be in the
range 0 to 255, or —32878 to 32767 for
POKE-W.

Ignores

All POKE commands accept any 32-bit
long integer value as a second parameter
without complaint. POKE ignores the top
24 bits of the value and POKE-W ignores
the top half. The effect is that, like POKE
L, POKE and POKE-W allow any
parameter values in the range plus or
minus about two billion. For instance:

POKE 131072, 131074

stores the value 2 in the first byte of QL
display memory. The low byte of the value
131074 is 2 and POKE ignores other bytes.

Once again, Turbo duplicates this bug
for compatibility in compiled programs.
Turbo code converts both parameters
from floating point values, as SuperBasic
has no ‘long integer’ data-type. This

Listing 2 - Random access without a Toolkit.

OPEN—NEW #3, MDV1-TEST
FOR L=O TO 9 PRINT #3;”Line:”;L
SCROLL #3,0,42 : REMark Rewind
REPeat show

INPUT #3,A$
PRINT 1t3,A$
IF EOF(#3) : EXIT show

END REPeat show
REPeat scan

INPUT Enter record
IF R<>INT(R) OR R<O
SCROLL 4t3,R*7,42
INPUT #3,A$
PRINT #3,A$

END REPeat scan
CLOSE 13

No. 0—9:;R
OR R>9 : EXIT scan

20 Sinclair!QL World February 1989

makes it slower than it would be if POKE
and POKE-W worked only with integers
but the Turbo code is still much faster than
the Sinclair resident POKE routine.

(* Bug 99— BEEP INTERACTION *)

Very high-pitched notes produced with
BEEP interfere with keyboard polling. If
you use BEEP 0,0 to generate a
continuous tone you will find it difficult to
type-in anything else while the tone
sounds. BEEP 0,1 is not bad but key
strokes are still lost while the beeping is

active. The problem occurs because the
keyboard is read by a program in the 8049
second processor.

The same program also generates
sounds by sending pulses to the OL
squeaker. When the 8049 is making a
high-pitched note it does not have
sufficient time between clicks to scan the
keyboard.

There is no easy fix for this, as the faulty
code is buried in the IPC, which includes
ROM, RAM and processor all in one
chip. NEC makes a user-programmable
version of this chip, the 8749HC, but you
will need a few specialised tools to
disassemble, patch and re-program the
IPC. In practice it is much easier to avoid
sustained use of pitches 0 and 1.

(* Bug 100 KEYROW *)

Another IPC bug is concerned with
keyboard polling. The QL manual says it
is tricky to detect three or more . key
depressions with the KEYROW function
but reassures the reader that SHIFT, ALT
and CTRL do not interact misleadingly
with other keys. Unfortunately this is not
true. Compware programmer Francesco
Balena has discovered that the arrow keys
can interfere with CTRL and ALT.

If the UP and LEFT arrow keys are
pressed at the same time, a common
event in games and joystick programs,
the CTRL and ALT keys are
indistinguishable. Normally KEYROW
(7) returns a set bit for each of the keys but
if you press UP, LEFT and ALT you get
the same KEYROW pattern as for UP,
LEFT and CTRL; in either case, both the
bits for CT’RL and ALT are set, even
though only one of them is pressed.

The only way to avoid this problem is
not to use diagonal cursor movements in

conjunction with CTRL or ALT. This bug
is probably a documentation error rather
than a real coding mistake, as it would be
rather inconsistent if the QL could cope
with those key combinations without
trouble.

(* Bug 101 BEEP/KEYROW
CRASHES *)

If a task if loaded or unloaded while the
SuperBasic interpreter executes a BEEP
or a KEYROW instruction, the whole
computer is likely to crash. BEEP and
KEYROW call MT.IPCOM, passing the

address of a parameter table stored on the
user A7 stack. This is bad programming
because SuperBasic may re-locate the
stack in memory at any time if memory is
needed for other tasks.

If Basic moves during BEEP (IPC 10/
11) or KEYROW (IPC 9) the table
address is invalidated and gibberish may
be passed to the IPC. In the original Qdos
documentation, designer Tony Tebby
warned: “IPC communication is
completely unprotected. The command
must not contain any errors or the entire
machine will hang up.

Interpreter

To fix the interpreter you must re
define the BEEP and KEYROW
keywords. The machine code could be the
same apart from a switch into supervisor
mode freezing multi-tasking during
the IPCOM call. The easiest alternative is
to compile the program. This cures the
problem because the stack of a compiled
program never moves while a task runs.

(* Bug 102 — SERIAL OVER-RUN *)

Chas Dillon and Tony Price report a
problem in the handling of serial queues.
The second processor can get its pointers
in a muddle, when running fast
communications programs, if it is asked to
do something else at the same time, like
generating a sound or recognising a
keypress.

Characters are delayed and jumbled
inside the IPC, so that they reach the
buffers in QL main memory out of order.
It is not an easy bug to demonstrate as it
depends on precise external timings but it
is consistent enough to make fast serial

input irritatingly unreliable. The bug
occurs even if you use ‘handshaking’
hardware to regulate the flow of data.

If the IPC is disturbed while reading
from a serial port it may lose several
characters or introduce a ‘lag’ so that each
new character received causes an earlier
character to be passed from the IPC to the
main processor.

A proper cure for this bug would
involve re-programming the 8049. It
might be wiser to circumvent this by
building a dedicated QL serial port but
that would still take a great deal of

hardware and software effort.
Alternatively, use a slow data rate like
300 baud or buy a Thor XVI.

(* UPDATE—MTCRODRIVE WRITE
PROTECTION *)

In my September, 1987 bug list I
mentioned that write-protecting a
Microdrive does not stop the system trying
to write to it.

In fact, the QL tries to write the
data eight times but each time the low-
level code aborts because the tape is write-
protected. This means the drive runs for a
little more than a minute, then a ‘bad or
changed medium’ message appears.

At the time I suggested that you might
cure this problem by using IPC call I to
test the write-protect status of the
currently-turning drive.

I have since tried this and it does not
work. IPC call 1 has a bug in it which
means it always indicates that the tape can
be written-to, even if it is write-protected.
This is a really annoying bug, because you
cannot re-program Qdos round it.

The only way to avoid spurious bad or
changed medium errors is to ensure that
you never try to write to a cartridge which
has the plastic ‘write-protect’ tag re
moved. It is for you to check this,
because the computer cannot check
for you.

(* FUTURE BUGS *)

This is certainly not a definitive list of
QL bugs, although it covers all the
problems I have been able to analyse in
detail. If you have extra information
about these or other QL bugs, please
share your discoveries by writing to me,
care of QL World.

Listing 3 - Integer packing with CHR$.

IF X%<O
RETurn CHR$(256+X% DIV 256) & CHR$(X% MOD 256)

ELSE
RETurn CHR$(X% DIV 256) & CHR$(X% MOD 256)

END IF

Sinclair/QL World February 1989 21

Sinclair QL Preservation Project (SQPP)

On January 12th 1984 Sir Clive Sinclair presented the Sinclair QL
Professional Computer in a Hollywood-style launch event at the
Intercontinental Hotel, Hyde Park Corner, London. This was
exactly 12 days earlier than Steve Jobs presented the Apple
Macintosh.

The QL still is a very good example of an innovative, stylish,
powerful and underestimated product. On one hand it failed in the
market in the long run but on the other it influenced many
developments which ended in today’s products.

2009 was the year of its 25th anniversary in which month by month new activities were
launched.

Jan 12th – Congratulation to the QL's 25th birthday. Message
spread to VIP, community and media.
http://www.qlvsjaguar.homepage.bluewin.ch/SinclairQL_25th_anniversary_1984_to_2009.h
tml

Check out this 25th anniversary presentation…
http://www.cowo.ch/downloads/SinclairQLis25-compressed.ppt

Try QPC, a virtual QL running under Windows...
http://www.cowo.ch/downloads/QPC_a_virtual_QL.zip

Feb 19th – Massive coverage (11 pages) of the QL in the April
Issue of Personal Computer World (PCW) magazine.
http://www.pcw.co.uk

Mar 12th – Sinclair QL Preservation Project (SQPP) launched,
starting with Documents/Publications from Sinclair Research Ltd
and various computer magazines of the years 1984 to 1986.
http://www.qlvsjaguar.homepage.bluewin.ch/SinclairQL_preservation_project.html

QL forever!

Urs König (aka cowo)
http://www.qlvsjaguar.homepage.bluewin.ch

	198x_SinclairQL_Firmware_stories_ROMblings-SQPP
	1984-08_POC_V03_No34_Letter_QDOS-Manual_Firmware
	1984-10_QLU_News_SidSmith_quoting_TonyTebby_and_DavidPotter_page04
	1985-10_QLU_News_MG-ROM_page05
	1985-10_QLU_AlanTurnbull_on_Firmware_page10
	1985-10_QLU_AlanTurnbull_on_Firmware_page11
	1985-10_QLU_AlanTurnbull_on_Firmware_page12
	1987-08_QLW_SNG_on_Firmware_102bugs_1-46_page18
	1987-08_QLW_SNG_on_Firmware_102bugs_1-46_page19
	1987-08_QLW_SNG_on_Firmware_102bugs_1-46_page20
	1987-08_QLW_SNG_on_Firmware_102bugs_1-46_page21
	1987-09_QLW_SNG_on_Firmware_102bugs_47-77_page12
	1987-09_QLW_SNG_on_Firmware_102bugs_47-77_page13
	1987-09_QLW_SNG_on_Firmware_102bugs_47-77_page14
	1987-09_QLW_SNG_on_Firmware_102bugs_47-77_page15
	1988-06_QLW_SNG_on_Firmware_102bugs_78-88_page30
	1988-06_QLW_SNG_on_Firmware_102bugs_78-88_page31
	1988-06_QLW_SNG_on_Firmware_102bugs_78-88_page32
	1988-06_QLW_SNG_on_Firmware_102bugs_78-88_page33
	1989-02_QLW_SNG_on_Firmware_102bugs_89-102_page18
	1989-02_QLW_SNG_on_Firmware_102bugs_89-102_page19
	1989-02_QLW_SNG_on_Firmware_102bugs_89-102_page20
	1989-02_QLW_SNG_on_Firmware_102bugs_89-102_page21

	SINCLAIR_QL_Preservation_Project_SQPP-V4

